This is a copy of my Zotero bibliography collection. It is automatically updated as I add new entries to my collection.

Journal Articles

  1. Barshan, B., & Kuc, R. (July-Aug./1992). A Bat-like Sonar System for Obstacle Localization. IEEE Transactions on Systems, Man, and Cybernetics, 22(4), 636–646. https://doi.org/10.1109/21.156577
  2. Zhu, H., Gupta, A. K., Wu, X., Goldsworthy, M., Wang, R., Mikkilineni, M., & Müller, R. (2023). A Validation Study for a Bat-Inspired Sonar Sensing Simulator. PLOS ONE, 18(1), e0280631. https://doi.org/10.1371/journal.pone.0280631
  3. Barber, J. R., Plotkin, D., Rubin, J. J., Homziak, N. T., Leavell, B. C., Houlihan, P. R., … Kawahara, A. Y. (2022). Anti-Bat Ultrasound Production in Moths Is Globally and Phylogenetically Widespread. Proceedings of the National Academy of Sciences, 119(25), e2117485119. https://doi.org/10.1073/pnas.2117485119
  4. Eitan, O., Taub, M., Boonman, A., Zviran, A., Tourbabin, V., Weiss, A. J., & Yovel, Y. (2022). Echolocating Bats Rapidly Adjust Their Mouth Gape to Control Spatial Acquisition When Scanning a Target. BMC Biology, 20(1), 282. https://doi.org/10.1186/s12915-022-01487-w
  5. Fenton, M. B. (2022). Ear Anatomy Traces a Family Tree for Bats. Nature, 602, 387–388.
  6. López-González, C., & Ocampo-Ramírez, C. (2022). External Ears in Chiroptera: Form-Function Relationships in an Ecological Context. Acta Chiropterologica, 23(2). https://doi.org/10.3161/15081109ACC2021.23.2.019
  7. Luo, J., Lu, M., Luo, J., & Moss, C. F. (2022). Echo Feedback Mediates Noise-Induced Vocal Modifications in Flying Bats. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01585-8
  8. Pedersen, M. B., Uebel, A. S., Beedholm, K., Foskolos, I., Stidsholt, L., & Madsen, P. T. (2022). Echolocating Daubenton’s Bats Call Louder, but Show No Spectral Jamming Avoidance in Response to Bands of Masking Noise during a Landing Task. Journal of Experimental Biology, 225(7), jeb243917. https://doi.org/10.1242/jeb.243917
  9. Schoeppler, D., Kost, K., Schnitzler, H.-U., & Denzinger, A. (2022). Transmitter and Receiver of the Low Frequency Horseshoe Bat Rhinolophus Paradoxolophus Are Functionally Matched for Fluttering Target Detection. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01571-0
  10. Stowell, D. (2022). Computational Bioacoustics with Deep Learning: A Review and Roadmap. PeerJ, 10, e13152. https://doi.org/10.7717/peerj.13152
  11. Teshima, Y., Yamada, Y., Tsuchiya, T., Heim, O., & Hiryu, S. (2022). Analysis of Echolocation Behavior of Bats in “Echo Space” Using Acoustic Simulation. BMC Biology, 20(1), 59. https://doi.org/10.1186/s12915-022-01253-y
  12. Teshima, Y., Nomura, T., Kato, M., Tsuchiya, T., Shimizu, G., & Hiryu, S. (2022). Effect of Bat Pinna on Sensing Using Acoustic Finite Difference Time Domain Simulation. The Journal of the Acoustical Society of America, 151(6), 4039–4045. https://doi.org/10.1121/10.0011737
  13. Teshima, Y., Hasegawa, Y., Tsuchiya, T., Moriyama, R., Genda, S., Kawamura, T., & Hiryu, S. (2022). Reconstruction of Echoes Reaching Bats in Flight from Arbitrary Targets by Acoustic Simulation. The Journal of the Acoustical Society of America, 151(3), 2127–2134. https://doi.org/10.1121/10.0009916
  14. Tsuchiya, T., Teshima, Y., & Hiryu, S. (2022). Two-Dimensional Finite Difference-Time Domain Simulation of Moving Sound Source and Receiver. Acoustical Science and Technology, 43(1), 57–65. https://doi.org/10.1250/ast.43.57
  15. Tuninetti, A., Simmons, A. M., & Simmons, J. A. (2022). Amplitude Discrimination Is Predictably Affected by Echo Frequency Filtering in Wideband Echolocating Bats. The Journal of the Acoustical Society of America, 151(2), 982–991. https://doi.org/10.1121/10.0009486
  16. Ye, H., & Luo, J. (2022). Perceptual Hearing Sensitivity during Vocal Production. IScience, 25(11), 105435. https://doi.org/10.1016/j.isci.2022.105435
  17. Amichai, E., & Yovel, Y. (2021). Echolocating Bats Rely on an Innate Speed-of-Sound Reference. Proceedings of the National Academy of Sciences, 118(19), e2024352118. https://doi.org/10.1073/pnas.2024352118
  18. Malinka, C. E., Rojano-Doñate, L., & Madsen, P. T. (2021). Directional Biosonar Beams Allow Echolocating Harbour Porpoises to Actively Discriminate and Intercept Closely Spaced Targets. Journal of Experimental Biology, 224(16), jeb242779. https://doi.org/10.1242/jeb.242779
  19. Neil, T. R., Kennedy, E. E., Harris, B. J., & Holderied, M. W. (2021). Wingtip Folds and Ripples on Saturniid Moths Create Decoy Echoes against Bat Biosonar. Curr Biol, 31(21), 4824–4830.e3. https://doi.org/10.1016/j.cub.2021.08.038
  20. Stidsholt, L., Greif, S., Goerlitz, H. R., Beedholm, K., Macaulay, J., Johnson, M., & Madsen, P. T. (2021). Hunting Bats Adjust Their Echolocation to Receive Weak Prey Echoes for Clutter Reduction. Science Advances, 7(10), eabf1367. https://doi.org/10.1126/sciadv.abf1367
  21. Stidsholt, L., Johnson, M., Goerlitz, H. R., & Madsen, P. T. (2021). Wild Bats Briefly Decouple Sound Production from Wingbeats to Increase Sensory Flow during Prey Captures. IScience, 24(8), 102896. https://doi.org/10.1016/j.isci.2021.102896
  22. Danilovich, S., Shalev, G., Boonman, A., Goldshtein, A., & Yovel, Y. (2020). Echolocating Bats Detect but Misperceive a Multidimensional Incongruent Acoustic Stimulus. Proceedings of the National Academy of Sciences, 117(45), 28475–28484. https://doi.org/10.1073/pnas.2005009117
  23. Leiser-Miller, L. B., & Santana, S. E. (2020). Morphological Diversity in the Sensory System of Phyllostomid Bats: Implications for Acoustic and Dietary Ecology. Functional Ecology, 34(7), 1416–1427. https://doi.org/10.1111/1365-2435.13561
  24. Lu, M., Zhang, G., & Luo, J. (2020). Echolocating Bats Exhibit Differential Amplitude Compensation for Noise Interference at a Sub-Call Level. Journal of Experimental Biology, 223(19), jeb225284. https://doi.org/10.1242/jeb.225284
  25. Ma, X., Zhang, S., Dong, Z., Lu, H., Li, J., & Zhou, W. (2020). Special Acoustical Role of Pinna Simplifying Spatial Target Localization by the Brown Long-Eared Bat Plecotus Auritus. Physical Review E, 102(4), 040401. https://doi.org/10.1103/physreve.102.040401
  26. Tapu, R., Mocanu, B., & Zaharia, T. (2020). Wearable Assistive Devices for Visually Impaired: A State of the Art Survey. Pattern Recognition Letters, 137, 37–52. https://doi.org/10.1016/j.patrec.2018.10.031
  27. Yoh, N., Syme, P., Rocha, R., Meyer, C. F. J., & López-Baucells, A. (2020). Echolocation of Central Amazonian ‘Whispering’ Phyllostomid Bats: Call Design and Interspecific Variation. Mammal Research, 65(3), 583–597. https://doi.org/10.1007/s13364-020-00503-0
  28. Baier, A. L., Wiegrebe, L., & Goerlitz, H. R. (2019). Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. IScience, 14, 335–344. https://doi.org/10.1016/j.isci.2019.03.029
  29. Beetz, M. J., Kössl, M., & Hechavarría, J. C. (2019). Dynamic Adaptations in the Echolocation Behavior of Bats in Response to Acoustic Interference. BioRxiv, 604603. https://doi.org/10.1101/604603
  30. Geipel, I., Steckel, J., Tschapka, M., Vanderelst, D., Schnitzler, H.-U., Kalko, E. K. V., … Simon, R. (2019). Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Current Biology, 29(16), 2731–2736.e3. https://doi.org/10.1016/j.cub.2019.06.076
  31. Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). DeepPoseKit, a Software Toolkit for Fast and Robust Animal Pose Estimation Using Deep Learning. ELife, 8, e47994. https://doi.org/10.7554/elife.47994
  32. Shriram, U., & Simmons, J. A. (2019). Echolocating Bats Perceive Natural-Size Targets as a Unitary Class Using Micro-Spectral Ripples in Echoes. Behavioral Neuroscience, 133(3), 297–304. https://doi.org/10.1037/bne0000315
  33. Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., … Madsen, P. T. (2019). A 2.6g Sound and Movement Tag for Studying the Acoustic Scene and Kinematics of Echolocating Bats. Methods in Ecology and Evolution, 10(1), 48–58. https://doi.org/10.1111/2041-210x.13108
  34. Yin, X., & Müller, R. (2019). Fast-Moving Bat Ears Create Informative Doppler Shifts. Proceedings of the National Academy of Sciences, 116(25), 12270–12274. https://doi.org/10.1073/pnas.1901120116
  35. Baier, A. L., Stelzer, K.-J., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part II: Amplitude Modulation. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 204(11), 941–951. https://doi.org/10.1007/s00359-018-1292-y
  36. Baier, A. L., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part I: Delay Modulation. Journal of Comparative Physiology A, 204(11), 929–939. https://doi.org/10.1007/s00359-018-1291-z
  37. Fengzhen, Z., Guijuan, L., Zhaohui, Z., & Chen, H. (2018). Doppler Shift Extraction of Wideband Signal Using Spectrum Scaling Matching. MATEC Web of Conferences, 208, 01001. https://doi.org/10.1051/matecconf/201820801001
  38. Genzel, D., Yovel, Y., & Yartsev, M. M. (2018). Neuroethology of Bat Navigation. Current Biology, 28(17), R997–R1004. https://doi.org/10.1016/j.cub.2018.04.056
  39. King, S. L., Friedman, W. R., Allen, S. J., Gerber, L., Jensen, F. H., Wittwer, S., … Krützen, M. (2018). Bottlenose Dolphins Retain Individual Vocal Labels in Multi-level Alliances. Current Biology, 28(12), 1993–1999.e3. https://doi.org/10.1016/j.cub.2018.05.013
  40. Pedrozo, A. R., Gomes, L. A. C., & Uieda, W. (2018). Feeding Behavior and Activity Period of Three Neotropical Bat Species (Chiroptera: Phyllostomidae) on Musa Paradisiaca Inflorescences (Zingiberales: Musaceae). Iheringia. Série Zoologia, 108. https://doi.org/10.1590/1678-4766e2018022
  41. Ratcliffe, J. M., & Jakobsen, L. (2018). Don’t Believe the Mike: Behavioural, Directional, and Environmental Impacts on Recorded Bat Echolocation Call Measures. Canadian Journal of Zoology, 96(4), 283–288. https://doi.org/10.1139/cjz-2017-0219
  42. Vanderelst, D., & Peremans, H. (2018). Modeling Bat Prey Capture in Echolocating Bats: The Feasibility of Reactive Pursuit. Journal of Theoretical Biology, 456, 305–314. https://doi.org/10.1016/j.jtbi.2018.07.027
  43. Blumenstein, T., Turova, V., Alves-Pinto, A., & Lampe, R. (2017). A Jacket for Assisting Sensorimotor-Related Impairments and Spatial Perception. Measurement Science and Technology, 28(4), 044003. https://doi.org/10.1088/1361-6501/aa500e
  44. Kugler, K., & Wiegrebe, L. (2017). Echo-Acoustic Scanning with Noseleaf and Ears in Phyllostomid Bats. Journal of Experimental Biology, 220(15), 2816–2824. https://doi.org/10.1242/jeb.160309
  45. Lee, W.-J., Falk, B., Chiu, C., Krishnan, A., Arbour, J. H., & Moss, C. F. (2017). Tongue-Driven Sonar Beam Steering by a Lingual-Echolocating Fruit Bat. PLoS Biology, 15(12), e2003148. https://doi.org/10.1371/journal.pbio.2003148
  46. Ming, C., Gupta, A. K., Lu, R., Zhu, H., & Müller, R. (2017). A Computational Model for Biosonar Echoes from Foliage. PLOS ONE, 12(8), e0182824. https://doi.org/10.1371/journal.pone.0182824
  47. Ming, C., Zhu, H., & Müller, R. (2017). A Simplified Model of Biosonar Echoes from Foliage and the Properties of Natural Foliages. PLOS ONE, 12(12), e0189824. https://doi.org/10.1371/journal.pone.0189824
  48. Hase, K., Miyamoto, T., Kobayasi, K. I., & Hiryu, S. (2016). Rapid Frequency Control of Sonar Sounds by the FM Bat, Miniopterus Fuliginosus, in Response to Spectral Overlap. Behavioural Processes, 128, 126–133. https://doi.org/10.1016/j.beproc.2016.04.017
  49. Hoffmann, S., Vega-Zuniga, T., Greiter, W., Krabichler, Q., Bley, A., Matthes, M., … Luksch, H. (2016). Congruent Representation of Visual and Acoustic Space in the Superior Colliculus of the Echolocating Bat Phyllostomus Discolor. European Journal of Neuroscience, 44(9), 2685–2697. https://doi.org/10.1111/ejn.13394
  50. Linnenschmidt, M., & Wiegrebe, L. (2016). Sonar Beam Dynamics in Leaf-Nosed Bats. Scientific Reports, 6(1), 29222. https://doi.org/10.1038/srep29222
  51. Luo, J., & Wiegrebe, L. (2016). Biomechanical Control of Vocal Plasticity in an Echolocating Bat. Journal of Experimental Biology, jeb.134957. https://doi.org/10.1242/jeb.134957
  52. Luo, J., Lingner, A., Firzlaff, U., & Wiegrebe, L. (2016). The Lombard Effect Emerges Early in Young Bats: Implications for the Development of Audio-Vocal Integration. Journal of Experimental Biology, jeb.151050. https://doi.org/10.1242/jeb.151050
  53. Wohlgemuth, M. J., Luo, J., & Moss, C. F. (2016). Three-Dimensional Auditory Localization in the Echolocating Bat. Current Opinion in Neurobiology, 41, 78–86. https://doi.org/10.1016/j.conb.2016.08.002
  54. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using \textbfLme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
  55. Danilovich, S., Krishnan, A., Lee, W.-J., Borrisov, I., Eitan, O., Kosa, G., … Yovel, Y. (2015). Bats Regulate Biosonar Based on the Availability of Visual Information. Current Biology, 25(23), R1124–R1125. https://doi.org/10.1016/j.cub.2015.11.003
  56. Genzel, D., Hoffmann, S., Prosch, S., Firzlaff, U., & Wiegrebe, L. (2015). Biosonar Navigation above Water II: Exploiting Mirror Images. Journal of Neurophysiology, 113(4), 1146–1155. https://doi.org/10.1152/jn.00264.2014
  57. Hoffmann, S., Genzel, D., Prosch, S., Baier, L., Weser, S., Wiegrebe, L., & Firzlaff, U. (2015). Biosonar Navigation above Water I: Estimating Flight Height. Journal of Neurophysiology, 113(4), 1135–1145. https://doi.org/10.1152/jn.00263.2014
  58. Hulgard, K., Moss, C. F., Jakobsen, L., & Surlykke, A. (2015). Big Brown Bats (Eptesicus Fuscus) Emit Intense Search Calls and Fly in Stereotyped Flight Paths as They Forage in the Wild. Journal of Experimental Biology, 219(3), 334–340. https://doi.org/10.1242/jeb.128983
  59. Kounitsky, P., Rydell, J., Amichai, E., Boonman, A., Eitan, O., Weiss, A. J., & Yovel, Y. (2015). Bats Adjust Their Mouth Gape to Zoom Their Biosonar Field of View. Proceedings of the National Academy of Sciences, 112(21), 6724–6729. https://doi.org/10.1073/pnas.1422843112
  60. Luo, J. (2015). Linking the Sender to the Receiver: Vocal Adjustments by Bats to Maintain Signal Detection in Noise. Scientific Reports, 11.
  61. Marshall, K. L., Chadha, M., deSouza, L. A., Sterbing-D’Angelo, S. J., Moss, C. F., & Lumpkin, E. A. (2015). Somatosensory Substrates of Flight Control in Bats. Cell Reports, 11(6), 851–858. https://doi.org/10.1016/j.celrep.2015.04.001
  62. Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating Fruit Bats Produce Biosonar Clicks with Their Wings. Current Biology, 24(24), 2962–2967. https://doi.org/10.1016/j.cub.2014.10.077
  63. Heinrich, M., & Wiegrebe, L. (2013). Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance. PLoS ONE, 8(4), e61577. https://doi.org/10.1371/journal.pone.0061577
  64. Jakobsen, L., Ratcliffe, J. M., & Surlykke, A. (2013). Convergent Acoustic Field of View in Echolocating Bats. Nature, 493(7430), 93–96. https://doi.org/10.1038/nature11664
  65. Jakobsen, L., Brinkløv, S., & Surlykke, A. (2013). Intensity and Directionality of Bat Echolocation Signals. Frontiers in Physiology, 4, 89. https://doi.org/10.3389/fphys.2013.00089
  66. Matsuta, N., Hiryu, S., Fujioka, E., Yamada, Y., Riquimaroux, H., & Watanabe, Y. (2013). Adaptive Beam-Width Control of Echolocation Sounds by CF–FM Bats, Rhinolophus Ferrumequinum Nippon, during Prey-Capture Flight. Journal of Experimental Biology, 216(7), 1210–1218. https://doi.org/10.1242/jeb.081398
  67. Seibert, A.-M., Koblitz, J. C., Denzinger, A., & Schnitzler, H.-U. (2013). Scanning Behavior in Echolocating Common Pipistrelle Bats (Pipistrellus Pipistrellus). PLoS ONE, 8(4), e60752. https://doi.org/10.1371/journal.pone.0060752
  68. Surlykke, A., Jakobsen, L., Kalko, E. K. V., & Page, R. A. (2013). Echolocation Intensity and Directionality of Perching and Flying Fringe-Lipped Bats, Trachops Cirrhosus (Phyllostomidae). Frontiers in Physiology, 4, 143. https://doi.org/10.3389/fphys.2013.00143
  69. Feng, L., Gao, L., Lu, H., & Müller, R. (2012). Noseleaf Dynamics during Pulse Emission in Horseshoe Bats. PLoS ONE, 7(5), e34685. https://doi.org/10.1371/journal.pone.0034685
  70. Fenton, M. B., Faure, P. A., & Ratcliffe, J. M. (2012). Evolution of High Duty Cycle Echolocation in Bats. Journal of Experimental Biology, 215(17), 2935–2944. https://doi.org/10.1242/jeb.073171
  71. Genzel, D., Geberl, C., Dera, T., & Wiegrebe, L. (2012). Coordination of Bat Sonar Activity and Flight for the Exploration of Three-Dimensional Objects. Journal of Experimental Biology, 215(13), 2226–2235. https://doi.org/10.1242/jeb.064535
  72. Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats Use Echo Harmonic Structure to Distinguish Their Targets from Background Clutter. Science, 333(6042), 627–630. https://doi.org/10.1126/science.1202065
  73. Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation Call Intensity and Directionality in Flying Short-Tailed Fruit Bats, Carollia Perspicillata (Phyllostomidae)a). The Journal of the Acoustical Society of America, 129(1), 427. https://doi.org/10.1121/1.3519396
  74. Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast Muscles Set Maximum Call Rate in Echolocating Bats. Science, 333(6051), 1885–1888. https://doi.org/10.1126/science.1207309
  75. Gao, L., Balakrishnan, S., He, W., Yan, Z., & Müller, R. (2011). Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns. Physical Review Letters, 107(21), 214301. https://doi.org/10.1103/physrevlett.107.214301
  76. Kuc, R. (2011). Bat Noseleaf Model: Echolocation Function, Design Considerations, and Experimental Verification. The Journal of the Acoustical Society of America, 129(5), 3361–3366. https://doi.org/10.1121/1.3569703
  77. Lazure, L., & Fenton, M. B. (2011). High Duty Cycle Echolocation and Prey Detection by Bats. Journal of Experimental Biology, 214(7), 1131–1137. https://doi.org/10.1242/jeb.048967
  78. Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive Vocal Behavior Drives Perception by Echolocation in Bats. Current Opinion in Neurobiology, 21(4), 645–652. https://doi.org/10.1016/j.conb.2011.05.028
  79. Goerlitz, H. R., Geberl, C., & Wiegrebe, L. (2010). Sonar Detection of Jittering Real Targets in a Free-Flying Bat. The Journal of the Acoustical Society of America, 128(3), 1467–1475. https://doi.org/10.1121/1.3445784
  80. Jakobsen, L., & Surlykke, A. (2010). Vespertilionid Bats Control the Width of Their Biosonar Sound Beam Dynamically during Prey Pursuit. Proceedings of the National Academy of Sciences, 107(31), 13930–13935. https://doi.org/10.1073/pnas.1006630107
  81. Koblitz, J. C., Stilz, P., & Schnitzler, H.-U. (2010). Source Levels of Echolocation Signals Vary in Correlation with Wingbeat Cycle in Landing Big Brown Bats (Eptesicus Fuscus). Journal of Experimental Biology, 213(19), 3263–3268. https://doi.org/10.1242/jeb.045450
  82. Kuc, R. (2010). Morphology Suggests Noseleaf and Pinnae Cooperate to Enhance Bat Echolocation. The Journal of the Acoustical Society of America, 128(5), 3190–3199. https://doi.org/10.1121/1.3488304
  83. Moss, C. F., & Surlykke, A. (2010). Probing the Natural Scene by Echolocation in Bats. Frontiers in Behavioral Neuroscience, 4, 33. https://doi.org/10.3389/fnbeh.2010.00033
  84. Müller, R. (2010). Numerical Analysis of Biosonar Beamforming Mechanisms and Strategies in Bats. The Journal of the Acoustical Society of America, 128(3), 1414. https://doi.org/10.1121/1.3365246
  85. Vanderelst, D., Mey, F. D., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What Noseleaves Do for FM Bats Depends on Their Degree of Sensorial Specialization. PLoS ONE, 5(8), e11893. https://doi.org/10.1371/journal.pone.0011893
  86. Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., … Fenton, M. B. (2010). A Bony Connection Signals Laryngeal Echolocation in Bats. Nature, 463(7283), 939–942. https://doi.org/10.1038/nature08737
  87. Wersényi, G. (2010). Representations of HRTFs Using MATLAB: 2D and 3D Plots of Accurate Dummy-Head Measurements.
  88. Wittrock, U. (2010). Laryngeally Echolocating Bats. Nature, 466(7309), E6–E6. https://doi.org/10.1038/nature09156
  89. Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal Localization by Pointing Off Axis. Science, 327(5966), 701–704. https://doi.org/10.1126/science.1183310
  90. Kopsinis, Y., Aboutanios, E., Waters, D. A., & McLaughlin, S. (2009). Investigation of Bat Echolocation Calls Using High Resolution Spectrogram and Instantaneous Frequency Based Analysis. 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 557–560. https://doi.org/10.1109/ssp.2009.5278516
  91. Kuc, R. (2009). Model Predicts Bat Pinna Ridges Focus High Frequencies to Form Narrow Sensitivity Beams. The Journal of the Acoustical Society of America, 125(5), 3454. https://doi.org/10.1121/1.3097500
  92. Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic Scanning of Natural Scenes by Echolocation in the Big Brown Bat, Eptesicus Fuscus. Journal of Experimental Biology, 212(7), 1011–1020. https://doi.org/10.1242/jeb.024620
  93. Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating Bats Emit a Highly Directional Sonar Sound Beam in the Field. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 853–860. https://doi.org/10.1098/rspb.2008.1505
  94. Wang, X., & Müller, R. (2009). Pinna-Rim Skin Folds Narrow the Sonar Beam in the Lesser False Vampire Bat ( Megaderma Spasma ). The Journal of the Acoustical Society of America, 126(6), 3311–3318. https://doi.org/10.1121/1.3257210
  95. De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
  96. De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
  97. Genzel, D., & Wiegrebe, L. (2008). Time-Variant Spectral Peak and Notch Detection in Echolocation-Call Sequences in Bats. Journal of Experimental Biology, 211(1), 9–14. https://doi.org/10.1242/jeb.012823
  98. Müller, R., Lu, H., & Buck, J. R. (2008). Sound-Diffracting Flap in the Ear of a Bat Generates Spatial Information. Physical Review Letters, 100(10), 108701. https://doi.org/10.1103/PhysRevLett.100.108701
  99. Surlykke, A., & Kalko, E. K. V. (2008). Echolocating Bats Cry Out Loud to Detect Their Prey. PLoS ONE, 3(4), e2036. https://doi.org/10.1371/journal.pone.0002036
  100. Wiegrebe, L. (2008). An Autocorrelation Model of Bat Sonar. Biological Cybernetics, 98(6), 587–595. https://doi.org/10.1007/s00422-008-0216-2
  101. Chiu, C., & Moss, C. F. (2007). The Role of the External Ear in Vertical Sound Localization in the Free Flying Bat, Eptesicus Fuscus. The Journal of the Acoustical Society of America, 121(4), 2227–2235. https://doi.org/10.1121/1.2434760
  102. Elliott, L. P., & Brook, B. W. (2007). Revisiting Chamberlin: Multiple Working Hypotheses for the 21st Century. BioScience, 57(7), 608–614. https://doi.org/10.1641/B570708
  103. Holderied, M. W., Baker, C. J., Vespe, M., & Jones, G. (2007). Understanding Signal Design during the Pursuit of Aerial Insects by Echolocating Bats: Tools and Applications. Integrative and Comparative Biology, 48(1), 74–84. https://doi.org/10.1093/icb/icn035
  104. Jones, G., & Holderied, M. W. (2007). Bat Echolocation Calls: Adaptation and Convergent Evolution. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 905–912. https://doi.org/10.1098/rspb.2006.0200
  105. Jung, K., Kalko, E. K. V., & Helversen, O. V. (2007). Echolocation Calls in Central American Emballonurid Bats: Signal Design and Call Frequency Alternation. Journal of Zoology, 272(2), 125–137. https://doi.org/10.1111/j.1469-7998.2006.00250.x
  106. MacDonald, J. A., & Tran, P. K. (2007). Loudspeaker Equalization for Auditory Research. Behavior Research Methods, 39(1), 133–136. https://doi.org/10.3758/bf03192851
  107. Madsen, P. T., & Wahlberg, M. (2007). Recording and Quantification of Ultrasonic Echolocation Clicks from Free-Ranging Toothed Whales. Deep Sea Research Part I: Oceanographic Research Papers, 54(8), 1421–1444. https://doi.org/10.1016/j.dsr.2007.04.020
  108. Waters, D. A. (2007). Echolocation in Air: Biological Systems, Technical Challenges, and Transducer Design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(10), 1165–1175. https://doi.org/10.1243/09544062JMES504
  109. Zhuang, Q., & Müller, R. (2007). Numerical Study of the Effect of the Noseleaf on Biosonar Beamforming in a Horseshoe Bat. Physical Review E, 76(5), 051902. https://doi.org/10.1103/physreve.76.051902
  110. Jones, G., & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001
  111. Kwiecinski, G. G. (2006). Phyllostomus Discolor. Mammalian Species, (801), 1–11. https://doi.org/10.1644/801.1
  112. Otani, M., & Ise, S. (2006). Fast Calculation System Specialized for Head-Related Transfer Function Based on Boundary Element Method. The Journal of the Acoustical Society of America, 119(5), 2589–2598. https://doi.org/10.1121/1.2191608
  113. Aytekin, M., Grassi, E., Sahota, M., & Moss, C. F. (2004). The Bat Head-Related Transfer Function Reveals Binaural Cues for Sound Localization in Azimuth and Elevation. The Journal of the Acoustical Society of America, 116(6), 3594–3605. https://doi.org/10.1121/1.1811412
  114. Nuzzo, R. (2004). P Values, the ‘Gold Standard’ of Statistical Validity, Are Not as Reliable as Many Scientists Assume. 3.
  115. Firzlaff, U., & Schuller, G. (2003). Spectral Directionality of the External Ear of the Lesser Spear-Nosed Bat, Phyllostomus Discolor. Hearing Research, 185(1-2), 110–122. https://doi.org/10.1016/s0378-5955(03)00281-8
  116. Ghose, K., & Moss, C. F. (2003). The Sonar Beam Pattern of a Flying Bat as It Tracks Tethered Insects. The Journal of the Acoustical Society of America, 114(2), 1120–1131. https://doi.org/10.1121/1.1589754
  117. Tollin, D. J., & Yin, T. C. T. (2003). Spectral Cues Explain Illusory Elevation Effects With Stereo Sounds in Cats. Journal of Neurophysiology, 90(1), 525–530. https://doi.org/10.1152/jn.00107.2003
  118. Moss, C. F., & Surlykke, A. (2001). Auditory Scene Analysis by Echolocation in Bats. The Journal of the Acoustical Society of America, 110(4), 2207–2226. https://doi.org/10.1121/1.1398051
  119. SCHNITZLER, H. A. N. S.-U. L. R. I. C. H., & KALKO, E. L. I. S. A. B. E. T. H. K. V. (2001). Echolocation by Insect-Eating Bats. BioScience, 51(7), 557. https://doi.org/10.1641/0006-3568(2001)051[0557:ebieb]2.0.co;2
  120. Sanderson, M. I., & Simmons, J. A. (2000). Neural Responses to Overlapping FM Sounds in the Inferior Colliculus of Echolocating Bats. Journal of Neurophysiology, 83(4), 1840–1855. https://doi.org/10.1152/jn.2000.83.4.1840
  121. Wotton, J. M., & Simmons, J. A. (2000). Spectral Cues and Perception of the Vertical Position of Targets by the Big Brown Bat, Eptesicus Fuscus. The Journal of the Acoustical Society of America, 107(2), 1034–1041. https://doi.org/10.1121/1.428283
  122. Hawksford, M. J. (1999). MATLAB Program for Loudspeaker Equalization and Crossover Design. Journal of the Audio Engineering Society, 47(9), 706–719. Retrieved from https://www.aes.org/e-lib/browse.cfm?elib=12094
  123. Altes, R. A. (1998). Echo Phase Perception in Bat Sonar? The Journal of the Acoustical Society of America, 69(2), 505. https://doi.org/10.1121/1.385479
  124. Walker, V. A., Peremans, H., & Hallam, J. C. (1998). One Tone, Two Ears, Three Dimensions: A Robotic Investigation of Pinnae Movements Used by Rhinolophid and Hipposiderid Bats. The Journal of the Acoustical Society of America, 104(1), 569–579. https://doi.org/10.1121/1.423256
  125. Simmons, J. A. (1997). Encyclopedia of Acoustics. 1819–1822. https://doi.org/10.1002/9780470172544.ch151
  126. Fuzessery, Z. M. (1996). Monaural and Binaural Spectral Cues Created by the External Ears of the Pallid Bat. Hearing Research, 95(1-2), 1–17. https://doi.org/10.1016/0378-5955(95)00223-5
  127. Simmons, J. A., Saillant, P. A., Wotton, J. M., Haresign, T., Ferragamo, M. J., & Moss, C. F. (1995). Composition of Biosonar Images for Target Recognition by Echolocating Bats. Neural Networks, 8(7-8), 1239–1261. https://doi.org/10.1016/0893-6080(95)00059-3
  128. Kalko, E. K. V., & Schnitzler, H.-U. (1993). Plasticity in Echolocation Signals of European Pipistrelle Bats in Search Flight: Implications for Habitat Use and Prey Detection. Behavioral Ecology and Sociobiology, 33(6), 415–428. https://doi.org/10.1007/bf00170257
  129. Obrist, M. K., Fenton, M. B., Eger, J. L., & Schlegel, P. A. (1993). What Ears Do for Bats: A Comparative Study of Pinna Sound Pressure Transformation in Chiroptera. The Journal of Experimental Biology, 180, 119–152.
  130. Pye, J. D. (1993). IS FIDELITY FUTILE? THE ‘TRUE’ SIGNAL IS ILLUSORY, ESPECIALLY WITH ULTRASOUND. Bioacoustics, 4(4), 271–286. https://doi.org/10.1080/09524622.1993.10510438
  131. Willig, M. R., Camilo, G. R., & Noble, S. J. (1993). Dietary Overlap in Frugivorous and Insectivorous Bats from Edaphic Cerrado Habitats of Brazil. Journal of Mammalogy, 74(1), 117–128. https://doi.org/10.2307/1381910
  132. Speakman, J. R., & Racey, P. A. (1991). No Cost of Echolocation for Bats in Flight. Nature, 350(6317), 421–423. https://doi.org/10.1038/350421a0
  133. Arita, H. T. (1990). Noseleaf Morphology and Ecological Correlates in Phyllostomid Bats. Journal of Mammalogy, 71(1), 36–47. https://doi.org/10.2307/1381314
  134. Simmons, J. A., Moss, C. F., & Ferragamo, M. (1990). Convergence of Temporal and Spectral Information into Acoustic Images of Complex Sonar Targets Perceived by the Echolocating Bat, Eptesicus Fuscus. Journal of Comparative Physiology A, 166(4), 449–470. https://doi.org/10.1007/BF00192016
  135. Simmons, J. A. (1989). A View of the World through the Bat’s Ear: The Formation of Acoustic Images in Echolocation. Cognition, 33(1-2), 155–199. https://doi.org/10.1016/0010-0277(89)90009-7
  136. Hartley, D. J., & Suthers, R. A. (1988). The Acoustics of the Vocal Tract in the Horseshoe Bat, Rhinolophus Hildebrandti. The Journal of the Acoustical Society of America, 84(4), 1201–1213. https://doi.org/10.1121/1.396621
  137. Mogdans, J., Ostwald, J., & Schnitzler, H.-U. (1988). The Role of Pinna Movement for the Localization of Vertical and Horizontal Wire Obstacles in the Greater Horseshoe Bat, R h i n o l o p u s f e r r u m e q u i n u m. The Journal of the Acoustical Society of America, 84(5), 1676–1679. https://doi.org/10.1121/1.397183
  138. Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation. (1987). Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1179), 335–427. https://doi.org/10.1098/rstb.1987.0030
  139. Hartley, D. J., & Suthers, R. A. (1987). The Sound Emission Pattern and the Acoustical Role of the Noseleaf in the Echolocating Bat, Carollia Perspicillata. The Journal of the Acoustical Society of America, 82(6), 1892–1900. https://doi.org/10.1121/1.395684
  140. Bell, G. P., & Fenton, M. B. (1984). The Use of Doppler-shifted Echoes as a Flutter Detection and Clutter Rejection System: The Echolocation and Feeding Behavior of Hipposideros Tuber (Chiroptera :Hipposideridae). (15), 109–114.
  141. Friedlander, B., & Porat, B. (1984). The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-20(2), 158–173. https://doi.org/10.1109/TAES.1984.310437
  142. Kick, S. A., & Simmons, J. A. (1984). Automatic Gain Control in the Bat’s Sonar Receiver and the Neuroethology of Echolocation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 4(11), 2725–2737. https://doi.org/10.1523/jneurosci.04-11-02725.1984
  143. Simmons, J. A., Kick, S. A., & Lawrence, B. D. (1984). Echolocation and Hearing in the Mouse-Tailed Bat,Rhinopoma Hardwickei: Acoustic Evolution of Echolocation in Bats. Journal of Comparative Physiology A, 154(3), 347–356. https://doi.org/10.1007/bf00605234
  144. Lawrence, B. D., & Simmons, J. A. (1982). Echolocation in Bats: The External Ear and Perception of the Vertical Positions of Targets. Science, 218(4571), 481–483. https://doi.org/10.1126/science.7123247
  145. Trappe, M., & Schnitzler, H.-U. (1982). Doppler-Shift Compensation in Insect-Catching Horseshoe Bats. Naturwissenschaften, 69(4), 193–194. https://doi.org/10.1007/BF00364902
  146. Simmons, J. A., & Stein, R. A. (1980). Acoustic Imaging in Bat Sonar: Echolocation Signals and the Evolution of Echolocation. Journal of Comparative Physiology, 135(1), 61–84. https://doi.org/10.1007/bf00660182
  147. Simmons, J. A. (1979). Perception of Echo Phase Information in Bat Sonar. Science, 204(4399), 1336–1338. https://doi.org/10.1126/science.451543
  148. Schuller, G. (1974). The Role of Overlap of Echo with Outgoing Echolocation Sound in the Bat Rhinolophus Ferrumequinum. Naturwissenschaften, 61(4), 171–172. https://doi.org/10.1007/BF00602598
  149. SUTHERS, R. O. D. E. R. I. C. K. A., THOMAS, S. T. E. V. E. N. P., & SUTHERS, B. A. R. B. A. R. A. J. (1972). Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat. Journal of Experimental Biology, 56, 37–48. Retrieved from https://jeb.biologists.org/content/56/1/37.short
  150. Strother, G. K., & Mogus, M. (1970). Acoustical Beam Patterns for Bats: Some Theoretical Considerations. The Journal of the Acoustical Society of America, 48(6B), 1430–1432. https://doi.org/10.1121/1.1912304
  151. Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The Echolocation of Flying Insects by Bats. Animal Behaviour, 8(3), 141–154. https://doi.org/10.1016/0003-3472(60)90022-1
  152. Griffin, D. R. (1944). How Bats Guide Their Flight by Supersonic Echoes. American Journal of Physics, 12(6), 342–345. https://doi.org/10.1119/1.1990634
  153. Perrine, J. O. (1944). The Doppler and Echo Doppler Effect. American Journal of Physics, 12(1), 23–28. https://doi.org/10.1119/1.1990527
  154. Griffin, D. R., & Galambos, R. (1941). The Sensory Basis of Obstacle Avoidance by Flying Bats. Journal of Experimental Zoology, 86(3), 481–506. https://doi.org/10.1002/jez.1400860310
  155. Chamberlin, T. C. (1890). The Method of Multiple Working Hypotheses. Science, ns-15(366), 92–96. https://doi.org/10.1126/science.ns-15.366.92
  156. Baldwin, M. Peer Review. Encyclopedia Of The History Of Science. Retrieved from https://ethos.lps.library.cmu.edu/article/id/19/
  157. Fletcher, N. H., & Thwaites, S. Obliquely Truncated Simple Horns: Idealized Models for Vertebrate Pinnae.

Conference Articles

  1. Nguyen, T. H., & Vanderelst, D. (2022). Toward Behavior-Based Models of Bat Echolocation. 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 1529–1536. https://doi.org/10.1109/SSCI51031.2022.10022100
  2. Ratcliffe, J. (2015). Ultrasonic and Superfast: Design Constraints on Echolocation in Bats. The Journal of the Acoustical Society of America, 138, 1931–1931. https://doi.org/10.1121/1.4934086
  3. Moss, C. (2012). Adaptive Echolocation Behavior in a Complex Sonar Scene. The Journal of the Acoustical Society of America, 131, 3360–3360. https://doi.org/10.1121/1.4708649
  4. Balakrishnan, S., Gao, L., He, W., & Müller, R. (2010). A Digital Model for the Deformation of Bat Ears. The Journal of the Acoustical Society of America, 127, 1862–1862. https://doi.org/10.1121/1.3384444
  5. Surlykke, A., Jakobsen, L., Brinkloev, S., & Moss, C. (2009). Bats Control the Auditory Scene by Adapting Intensity and Directionality of Echolocation Calls. The Journal of the Acoustical Society of America, 126, 2271–2271. https://doi.org/10.1121/1.3249296
  6. Moss, C., Ghose, K., & Surlykke, A. (2008). The Echolocating Bat Controls the Direction and Distance of Its Acoustic Gaze.

Book Chapters

  1. Gulia, P., & Gupta, A. (2017). Mathematics and Acoustics. In Mathematics Applied to Engineering (pp. 55–82). Elsevier. https://doi.org/10.1016/B978-0-12-810998-4.00003-X
  2. Surlykke, A., & Nachtigall, P. E. (2014). Biosonar of Bats and Toothed Whales: An Overview. In Biosonar (pp. 1–9).
  3. Carlile, S., Martin, R., & McAnally, K. (2005). Spectral Information in Sound Localization. In International Review of Neurobiology (Vol. 70, pp. 399–434). Elsevier. https://doi.org/10.1016/S0074-7742(05)70012-X

Books

  1. Fenton, B., Grinnell, A. D., Popper, A. N., & Fay, R. R. (2016). Bat Bioacoustics. Springer Link. Retrieved from https://link.springer.com/book/10.1007/978-1-4939-3527-7
  2. Jacobs, D. S., & Bastian, A. (2016). Predator–Prey Interactions: Co-evolution between Bats and Their Prey. https://doi.org/10.1007/978-3-319-32492-0
  3. Rossing, T. D. (Ed.). (2014). Springer Handbook of Acoustics (2nd ed.).
  4. Surlykke, A., Nachtigall, P. E., Fay, R. R., & Popper, A. N. (Eds.). (2014). Biosonar. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-9146-0
  5. Tan, L., & Jiang, J. (2014). Digital Signal Processing - Fundamentals and Applications. Retrieved from https://www.sciencedirect.com/book/9780124158931/digital-signal-processing
  6. Adams, R. A., & Pedersen, S. C. (2013). Bat Evolution, Ecology, and Conservation.
  7. Beranek, L. L., & Mellow, T. J. (2012). Acoustics: Sound Fields and Transducers. Retrieved from https://www.sciencedirect.com/book/9780123914217/acoustics-sound-fields-and-transducers
  8. Leis, J. W. (2011). Digital Signal Processing Using MATLAB for Students and Researchers. John Wiley & Sons, Inc.
  9. Havelock, D., Kuwano, S., & Vorländer, M. (Eds.). (2008). Handbook of Signal Processing in Acoustics (1st ed.). Springer New York, NY. Retrieved from https://link.springer.com/book/10.1007/978-0-387-30441-0
  10. Rocchesso, D. (2003). Introduction to Sound Processing. Firenze: Mondo estremo.
  11. Nachtigall, P. E., & Moore, P. W. B. (Eds.). (1988). Animal Sonar, Processes and Performance. Springer New York, NY. https://doi.org/10.1007/978-1-4684-7493-0
  12. Griffin, D. R. (1958). Listening in the Dark: The Acoustic Orientation of Bats and Men (pp. xviii, 413). Oxford, England: Yale Univer. Press.

Miscellaneous

  1. Wohlgemuth, M., & Moss, C. F. (2013). Active Listening in a Complex Environment.
  2. Schneider, H. (1960). Die Ohrmuskulature von Asellia tridens GEOFFR. (Hipposideridae) und Myotis myotis BORKH (Vespertilionidae) (Chiroptera).
  3. Perceptual Hearing Sensitivity during Vocal Production | Elsevier Enhanced Reader. https://doi.org/10.1016/j.isci.2022.105435

Technical Reports

  1. Geoffroy, P. (2004). A Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project. Paris, France: IRCAM.

Theses

  1. Carmena, J. M. (2001). Towards a Bionic Bat: A Biomimetic Investigation of Active Sensing, Doppler-shift Estimation, and Ear Morphology Design for Mobile Robots. (PhD thesis). Retrieved from https://era.ed.ac.uk/handle/1842/325

Cite As: Umadi, Ravi (2023). Bibliography, Retrieved from https://biosonix.io/Bibliography/