This is a copy of my Zotero bibliography collection. It is automatically updated as I add new entries to my collection.

  1. 1974SvA....18...17Z Page 17. Retrieved May 18, 2025, from https://adsabs.harvard.edu/full/1974SvA....18...17Z
  2. Acharya, L., & Fenton, M. B. (1992). Echolocation Behaviour of Vespertilionid Bats (Lasiurus Cinereus and Lasiurus Borealis) Attacking Airborne Targets Including Arctiid Moths. Canadian Journal of Zoology, 70(7), 1292–1298. https://doi.org/10.1139/z92-180
  3. Acoustics — Attenuation of Sound during Propagation Outdoors — Part 1: Calculation of the Absorption of Sound by the Atmosphere. (1993). International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:9613:-1:ed-1:v1:en
  4. Adams, R. A., & Pedersen, S. C. (2013). Bat Evolution, Ecology, and Conservation.
  5. Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., … Zonca, A. (2020). Planck 2018 Results - VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
  6. Altes, R. A. (1998). Echo Phase Perception in Bat Sonar? The Journal of the Acoustical Society of America, 69(2), 505. https://doi.org/10.1121/1.385479
  7. Amichai, E., Blumrosen, G., & Yovel, Y. (2015). Calling Louder and Longer: How Bats Use Biosonar under Severe Acoustic Interference from Other Bats. Proceedings. Biological Sciences, 282(1821), 20152064. https://doi.org/10.1098/rspb.2015.2064
  8. Amichai, E., & Yovel, Y. (2021). Echolocating Bats Rely on an Innate Speed-of-Sound Reference. Proceedings of the National Academy of Sciences, 118(19), e2024352118. https://doi.org/10.1073/pnas.2024352118
  9. Arai, S., Iwatani, Y., & Hashimoto, K. (2011). A Condition for Better Estimation Using Asynchronous Sampling than Synchronous Sampling. SICE Journal of Control, Measurement, and System Integration, 4(3), 249–253. https://doi.org/10.9746/jcmsi.4.249
  10. Arbour, J. H., Curtis, A. A., & Santana, S. E. (2019). Signatures of Echolocation and Dietary Ecology in the Adaptive Evolution of Skull Shape in Bats. Nature Communications, 10(1), 2036. https://doi.org/10.1038/s41467-019-09951-y
  11. Arita, H. T. (1990). Noseleaf Morphology and Ecological Correlates in Phyllostomid Bats. Journal of Mammalogy, 71(1), 36–47. https://doi.org/10.2307/1381314
  12. Arita, H. T. (1990). Noseleaf Morphology and Ecological Correlates in Phyllostomid Bats. Journal of Mammalogy, 71(1), 36–47.
  13. Aytekin, M., Grassi, E., Sahota, M., & Moss, C. F. (2004). The Bat Head-Related Transfer Function Reveals Binaural Cues for Sound Localization in Azimuth and Elevation. The Journal of the Acoustical Society of America, 116(6), 3594–3605. https://doi.org/10.1121/1.1811412
  14. Baier, A. L., Wiegrebe, L., & Goerlitz, H. R. (2019). Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. IScience, 14, 335–344. https://doi.org/10.1016/j.isci.2019.03.029
  15. Baier, A. L., Stelzer, K.-J., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part II: Amplitude Modulation. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 204(11), 941–951. https://doi.org/10.1007/s00359-018-1292-y
  16. Baier, A. L., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part I: Delay Modulation. Journal of Comparative Physiology A, 204(11), 929–939. https://doi.org/10.1007/s00359-018-1291-z
  17. Balakrishnan, S., Gao, L., He, W., & Müller, R. (2010). A Digital Model for the Deformation of Bat Ears. The Journal of the Acoustical Society of America, 127, 1862–1862. https://doi.org/10.1121/1.3384444
  18. Baldwin, M. Peer Review. In Encyclopedia Of The History Of Science. https://ethos.lps.library.cmu.edu/article/id/19/
  19. Barber, J. R., Plotkin, D., Rubin, J. J., Homziak, N. T., Leavell, B. C., Houlihan, P. R., Miner, K. A., Breinholt, J. W., Quirk-Royal, B., Padrón, P. S., Nunez, M., & Kawahara, A. Y. (2022). Anti-Bat Ultrasound Production in Moths Is Globally and Phylogenetically Widespread. Proceedings of the National Academy of Sciences, 119(25), e2117485119. https://doi.org/10.1073/pnas.2117485119
  20. Barchi, J. R., Knowles, J. M., & Simmons, J. A. (2013). Spatial Memory and Stereotypy of Flight Paths by Big Brown Bats in Cluttered Surroundings. Journal of Experimental Biology, 216(6), 1053–1063. https://doi.org/10.1242/jeb.073197
  21. Barrameda, E. M., Das, S., & Santoro, N. (2008). Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal Environments. In S. P. Fekete (Ed.), Algorithmic Aspects of Wireless Sensor Networks (pp. 125–140). Springer. https://doi.org/10.1007/978-3-540-92862-1_11
  22. Bass, H. E., Sutherland, L. C., Zuckerwar, A. J., Blackstock, D. T., & Hester, D. M. (1995). Atmospheric Absorption of Sound: Further Developments. The Journal of the Acoustical Society of America, 97(1), 680–683. https://doi.org/10.1121/1.412989
  23. Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats Use Echo Harmonic Structure to Distinguish Their Targets from Background Clutter. Science, 333(6042), 627–630. https://doi.org/10.1126/science.1202065
  24. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using \textbfLme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
  25. Beetz, M. J., Kössl, M., & Hechavarría, J. C. (2019). Dynamic Adaptations in the Echolocation Behavior of Bats in Response to Acoustic Interference. BioRxiv, 604603. https://doi.org/10.1101/604603
  26. Beleyur, T., & Goerlitz, H. R. (2019). Modeling Active Sensing Reveals Echo Detection Even in Large Groups of Bats. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26662–26668. https://doi.org/10.1073/pnas.1821722116
  27. Bell, G. P., & Fenton, M. B. (1984). The Use of Doppler-shifted Echoes as a Flutter Detection and Clutter Rejection System: The Echolocation and Feeding Behavior of Hipposideros Tuber (Chiroptera :Hipposideridae). Behav Ecol Sociobiol, 15, 109–114.
  28. Beranek, L. L., & Mellow, T. J. (2012). Acoustics: Sound Fields and Transducers. https://www.sciencedirect.com/book/9780123914217/acoustics-sound-fields-and-transducers
  29. Berkhout, A. J., & Zaanen, P. R. (1976). A Comparison Between Wiener Filtering, Kalman Filtering, and Deterministic Least Squares Estimation. Geophysical Prospecting, 24(1), 141–197. https://doi.org/10.1111/j.1365-2478.1976.tb00390.x
  30. Blackstock, S., Stevenson, R., Vanderelst, D., Haberman, M., Domski, P., & Kloepper, L. (2023). Sensing in the Swarm: Spectro-temporal Variation May Facilitate Self-Recognition of Echoes for Bats Flying in Dense Groups. The Journal of the Acoustical Society of America, 154(4_supplement), A48. https://doi.org/10.1121/10.0022758
  31. Bohn, K. M., Smarsh, G. C., & Smotherman, M. (2013). Social Context Evokes Rapid Changes in Bat Song Syntax. Animal Behaviour, 85(6), 1485–1491. https://doi.org/10.1016/j.anbehav.2013.04.002
  32. Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating Fruit Bats Produce Biosonar Clicks with Their Wings. Current Biology, 24(24), 2962–2967. https://doi.org/10.1016/j.cub.2014.10.077
  33. Bradbury, J. W., & Vehrencamp, S. L. (1976). Social Organization and Foraging in Emballonurid Bats. Behavioral Ecology and Sociobiology, 1(4), 337–381. https://doi.org/10.1007/BF00299399
  34. Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation Call Intensity and Directionality in Flying Short-Tailed Fruit Bats, Carollia Perspicillata (Phyllostomidae). The Journal of the Acoustical Society of America, 129(1), 427. https://doi.org/10.1121/1.3519396
  35. Britton, A. R. C., & Jones, G. (1999). Echolocation Behaviour and Prey-Capture Success in Foraging Bats: Laboratory and Field Experiments on Myotis Daubentonii. Journal of Experimental Biology, 202(13), 1793–1801. https://doi.org/10.1242/jeb.202.13.1793
  36. Camera Calibration. [Mathworks Documentation]. Camera Calibration. https://de.mathworks.com/help/vision/camera-calibration.html
  37. Carlile, S., Martin, R., & McAnally, K. (2005). Spectral Information in Sound Localization. In International Review of Neurobiology (Vol. 70, pp. 399–434). Elsevier. https://doi.org/10.1016/S0074-7742(05)70012-X
  38. Carmena, J. M. (2001). Towards a Bionic Bat: A Biomimetic Investigation of Active Sensing, Doppler-shift Estimation, and Ear Morphology Design for Mobile Robots. https://era.ed.ac.uk/handle/1842/325
  39. Carroll, S. M. (2001). The Cosmological Constant. Living Reviews in Relativity, 4(1), 1. https://doi.org/10.12942/lrr-2001-1
  40. Chamberlin, T. C. (1890). The Method of Multiple Working Hypotheses. Science, ns-15(366), 92–96. https://doi.org/10.1126/science.ns-15.366.92
  41. Chaverri, G., Ancillotto, L., & Russo, D. (2018). Social Communication in Bats. Biological Reviews of the Cambridge Philosophical Society, 93(4), 1938–1954. https://doi.org/10.1111/brv.12427
  42. Chen, Y., Liu, Q., Su, Q., Sun, Y., Peng, X., He, X., & Zhang, L. (2016). ’Compromise’ in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros Larvatus). PloS One, 11(3), e0151382. https://doi.org/10.1371/journal.pone.0151382
  43. Chiu, C., & Moss, C. F. (2007). The Role of the External Ear in Vertical Sound Localization in the Free Flying Bat, \mkbibemphEptesicus\mkbibemph Fuscus. The Journal of the Acoustical Society of America, 121(4), 2227–2235. https://doi.org/10.1121/1.2434760
  44. Chiu, C., & Moss, C. F. (2007). The Role of the External Ear in Vertical Sound Localization in the Free Flying Bat, Eptesicus Fuscus. The Journal of the Acoustical Society of America, 121(4), 2227–2235. https://doi.org/10.1121/1.2434760
  45. Christodoulou, D. (1991). Nonlinear Nature of Gravitation and Gravitational-Wave Experiments. Physical Review Letters, 67(12), 1486–1489. https://doi.org/10.1103/PhysRevLett.67.1486
  46. Cook, R. J., & Lawless, J. F. (2007). The Statistical Analysis of Recurrent Events. Springer.
  47. Corcoran, A., & Conner, W. (2014). Bats Jamming Bats: Food Competition through Sonar Interference. Science, 346(6210), 745–747. https://doi.org/10.1126/science.1259512
  48. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective Leadership and Decision-Making in Animal Groups on the Move. Nature, 433(7025), 513–516. https://doi.org/10.1038/nature03236
  49. Covey, E., & Casseday, J. H. (1999). Timing in the Auditory System of the Bat. Annual Review of Physiology, 61, 457–476. https://doi.org/10.1146/annurev.physiol.61.1.457
  50. Covey, E., & Casseday, J. H. (1999). Timing in the Auditory System of the Bat. Annual Review of Physiology, 61, 457–476. https://doi.org/10.1146/annurev.physiol.61.1.457
  51. Covey, E., & Casseday, J. H. (1999). TIMING IN THE AUDITORY SYSTEM OF THE BAT. Annual Review of Physiology, 61(1), 457–476. https://doi.org/10.1146/annurev.physiol.61.1.457
  52. Cox, D. R., & Isham, V. (2018). Point Processes. Routledge. https://doi.org/10.1201/9780203743034
  53. Danilovich, S., Krishnan, A., Lee, W.-J., Borrisov, I., Eitan, O., Kosa, G., Moss, C. F., & Yovel, Y. (2015). Bats Regulate Biosonar Based on the Availability of Visual Information. Current Biology, 25(23), R1124–R1125. https://doi.org/10.1016/j.cub.2015.11.003
  54. Danilovich, S., Shalev, G., Boonman, A., Goldshtein, A., & Yovel, Y. (2020). Echolocating Bats Detect but Misperceive a Multidimensional Incongruent Acoustic Stimulus. Proceedings of the National Academy of Sciences, 117(45), 28475–28484. https://doi.org/10.1073/pnas.2005009117
  55. de Framond, L., Beleyur, T., Lewanzik, D., & Goerlitz, H. R. (2023). Calibrated Microphone Array Recordings Reveal That a Gleaning Bat Emits Low-Intensity Echolocation Calls Even in Open-Space Habitat. Journal of Experimental Biology, 226(18), jeb245801. https://doi.org/10.1242/jeb.245801
  56. De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat \mkbibemphPhyllostomus\mkbibemph Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
  57. De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
  58. Denzinger, A., Tschapka, M., & Schnitzler, H.-U. (2018). The Role of Echolocation Strategies for Niche Differentiation in Bats. Canadian Journal of Zoology, 96(3), 171–181. https://doi.org/10.1139/cjz-2017-0161
  59. Dey, P., & Balakrishnan, R. (2024). A Trait-Based Understanding of the Vulnerability of a Paleotropical Moth Community to Predation by a Sympatric Bat with Flexible Foraging Strategies. Ecological Entomology, 49(5), 635–646. https://doi.org/10.1111/een.13335
  60. Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). ’Where’ and ’what’ in the Whisker Sensorimotor System. Nature Reviews. Neuroscience, 9(8), 601–612. https://doi.org/10.1038/nrn2411
  61. Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). ’Where’ and ’what’ in the Whisker Sensorimotor System. Nature Reviews. Neuroscience, 9(8), 601–612. https://doi.org/10.1038/nrn2411
  62. Ding, J., Zhang, Y., Han, F., Jiang, T., Feng, J., Lin, A., & Liu, Y. (2022). Adaptive Temporal Patterns of Echolocation and Flight Behaviors Used to Fly through Varied-Sized Windows by 2 Species of High Duty Cycle Bats. Current Zoology, 69(1), 32–40. https://doi.org/10.1093/cz/zoac018
  63. Ding, J., Han, F., Zhang, K., Lin, A., Jiang, T., Feng, J., & Liu, Y. (2023). Performance of Doppler Shift Compensation Varies with Environmental Temperature and Humidity in Bats. Animal Behaviour, 205, 35–46. https://doi.org/10.1016/j.anbehav.2023.08.009
  64. Dixon, M. M., Carter, G. G., Ryan, M. J., & Page, R. A. (2023). Spatial Learning Overshadows Learning Novel Odors and Sounds in Both Predatory and Frugivorous Bats. Behavioral Ecology, 34(3), 325–333. https://doi.org/10.1093/beheco/arad001
  65. Eick, G. N., Jacobs, D. S., & Matthee, C. A. (2005). A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera). Molecular Biology and Evolution, 22(9), 1869–1886. https://doi.org/10.1093/molbev/msi180
  66. Eitan, O., Taub, M., Boonman, A., Zviran, A., Tourbabin, V., Weiss, A. J., & Yovel, Y. (2022). Echolocating Bats Rapidly Adjust Their Mouth Gape to Control Spatial Acquisition When Scanning a Target. BMC Biology, 20(1), 282. https://doi.org/10.1186/s12915-022-01487-w
  67. Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast Muscles Set Maximum Call Rate in Echolocating Bats. Science, 333(6051), 1885–1888. https://doi.org/10.1126/science.1207309
  68. Elliott, L. P., & Brook, B. W. (2007). Revisiting Chamberlin: Multiple Working Hypotheses for the 21st Century. BioScience, 57(7), 608–614. https://doi.org/10.1641/B570708
  69. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, (KDD-96).
  70. Estimate Geometric Parameters of a Stereo Camera - MATLAB. Retrieved March 5, 2024, from https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html
  71. Fabian, S. T., Sumner, M. E., Wardill, T. J., Rossoni, S., & Gonzalez-Bellido, P. T. (2018). Interception by Two Predatory Fly Species Is Explained by a Proportional Navigation Feedback Controller. Journal of the Royal Society Interface, 15(147), 20180466. https://doi.org/10.1098/rsif.2018.0466
  72. Favata, M. (2010). The Gravitational-Wave Memory Effect. Classical and Quantum Gravity, 27(8), 084036. https://doi.org/10.1088/0264-9381/27/8/084036
  73. Feng, L., Gao, L., Lu, H., & Müller, R. (2012). Noseleaf Dynamics during Pulse Emission in Horseshoe Bats. PLoS ONE, 7(5), e34685. https://doi.org/10.1371/journal.pone.0034685
  74. Fengzhen, Z., Guijuan, L., Zhaohui, Z., & Chen, H. (2018). Doppler Shift Extraction of Wideband Signal Using Spectrum Scaling Matching. MATEC Web of Conferences, 208, 01001. https://doi.org/10.1051/matecconf/201820801001
  75. Fenton, B., Grinnell, A. D., Popper, A. N., & Fay, R. R. (2016). Bat Bioacoustics. Springer Link. https://link.springer.com/book/10.1007/978-1-4939-3527-7
  76. Fenton, M. B. (2010). Convergences in the Diversification of Bats. Current Zoology, 56(4), 454–468. https://doi.org/10.1093/czoolo/56.4.454
  77. Fenton, M. B. (2022). Ear Anatomy Traces a Family Tree for Bats. Nature, 602, 387–388.
  78. Fenton, M. B., Faure, P. A., & Ratcliffe, J. M. (2012). Evolution of High Duty Cycle Echolocation in Bats. Journal of Experimental Biology, 215(17), 2935–2944. https://doi.org/10.1242/jeb.073171
  79. Finger, N. M., Holderied, M., & Jacobs, D. S. (2022). Detection Distances in Desert Dwelling, High Duty Cycle Echolocators: A Test of the Foraging Habitat Hypothesis. PloS One, 17(5), e0268138. https://doi.org/10.1371/journal.pone.0268138
  80. Firzlaff, U., & Schuller, G. (2003). Spectral Directionality of the External Ear of the Lesser Spear-Nosed Bat, Phyllostomus Discolor. Hearing Research, 185(1–2), 110–122. https://doi.org/10.1016/s0378-5955(03)00281-8
  81. Fletcher, N. H., & Thwaites, S. Obliquely Truncated Simple Horns: Idealized Models for Vertebrate Pinnae.
  82. Forli, A., & Yartsev, M. M. (2023). Hippocampal Representation during Collective Spatial Behaviour in Bats. Nature, 621(7980), 796–803. https://doi.org/10.1038/s41586-023-06478-7
  83. Friedlander, B., & Porat, B. (1984). The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-20(2), 158–173. https://doi.org/10.1109/TAES.1984.310437
  84. Fry, R. N., Tuninetti, A., Simmons, J. A., & Simmons, A. M. (2024). Manipulating Environmental Clutter Reveals Dynamic Active Sensing Strategies in Big Brown Bats. Animal Behavior and Cognition, 11(1), 61–78. https://doi.org/10.26451/abc.11.01.04.2024
  85. Fujioka, E., Aihara, I., Sumiya, M., Aihara, K., & Hiryu, S. (2016). Echolocating Bats Use Future-Target Information for Optimal Foraging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 4848–4852. https://doi.org/10.1073/pnas.1515091113
  86. Fuzessery, Z. M. (1996). Monaural and Binaural Spectral Cues Created by the External Ears of the Pallid Bat. Hearing Research, 95(1–2), 1–17. https://doi.org/10.1016/0378-5955(95)00223-5
  87. Gao, L., Balakrishnan, S., He, W., Yan, Z., & Müller, R. (2011). Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns. Physical Review Letters, 107(21), 214301. https://doi.org/10.1103/physrevlett.107.214301
  88. Geberl, C., Brinkløv, S., Wiegrebe, L., & Surlykke, A. (2015). Fast Sensory–Motor Reactions in Echolocating Bats to Sudden Changes during the Final Buzz and Prey Intercept. Proceedings of the National Academy of Sciences, 112(13), 4122–4127. https://doi.org/10.1073/pnas.1424457112
  89. Geipel, I., Steckel, J., Tschapka, M., Vanderelst, D., Schnitzler, H.-U., Kalko, E. K. V., Peremans, H., & Simon, R. (2019). Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Current Biology, 29(16), 2731–2736.e3. https://doi.org/10.1016/j.cub.2019.06.076
  90. Genzel, D., Hoffmann, S., Prosch, S., Firzlaff, U., & Wiegrebe, L. (2015). Biosonar Navigation above Water II: Exploiting Mirror Images. Journal of Neurophysiology, 113(4), 1146–1155. https://doi.org/10.1152/jn.00264.2014
  91. Genzel, D., Geberl, C., Dera, T., & Wiegrebe, L. (2012). Coordination of Bat Sonar Activity and Flight for the Exploration of Three-Dimensional Objects. Journal of Experimental Biology, 215(13), 2226–2235. https://doi.org/10.1242/jeb.064535
  92. Genzel, D., Yovel, Y., & Yartsev, M. M. (2018). Neuroethology of Bat Navigation. Current Biology, 28(17), R997–R1004. https://doi.org/10.1016/j.cub.2018.04.056
  93. Genzel, D., & Wiegrebe, L. (2008). Time-Variant Spectral Peak and Notch Detection in Echolocation-Call Sequences in Bats. Journal of Experimental Biology, 211(1), 9–14. https://doi.org/10.1242/jeb.012823
  94. Geoffroy, P. (2004). A Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project. IRCAM.
  95. Geronazzo, M., Spagnol, S., & Avanzini, F. (2010). ESTIMATION AND MODELING OF PINNA-RELATED TRANSFER FUNCTIONS.
  96. Gessinger, G. (2025). On the Sensory Ecology of Phyllostomid Bats [Universität Ulm]. https://oparu.uni-ulm.de/items/ef1574a8-3fff-4127-acb1-3fd64fd6c861
  97. Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial Cognition in Bats and Rats: From Sensory Acquisition to Multiscale Maps and Navigation. Nature Reviews Neuroscience, 16(2), 94–108. https://doi.org/10.1038/nrn3888
  98. Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., & Moss, C. F. (2006). Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey. PLOS Biology, 4(5), e108. https://doi.org/10.1371/journal.pbio.0040108
  99. Ghose, K., & Moss, C. F. (2003). The Sonar Beam Pattern of a Flying Bat as It Tracks Tethered Insects. The Journal of the Acoustical Society of America, 114(2), 1120–1131. https://doi.org/10.1121/1.1589754
  100. Goerlitz, H. R., Geberl, C., & Wiegrebe, L. (2010). Sonar Detection of Jittering Real Targets in a Free-Flying Bat. The Journal of the Acoustical Society of America, 128(3), 1467–1475. https://doi.org/10.1121/1.3445784
  101. Goldshtein, A., Mazar, O., Harten, L., Amichai, E., Assa, R., Levi, A., Orchan, Y., Toledo, S., Nathan, R., & Yovel, Y. (2025). Onboard Recordings Reveal How Bats Maneuver under Severe Acoustic Interference. Proceedings of the National Academy of Sciences, 122(14), e2407810122. https://doi.org/10.1073/pnas.2407810122
  102. Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). DeepPoseKit, a Software Toolkit for Fast and Robust Animal Pose Estimation Using Deep Learning. ELife, 8, e47994. https://doi.org/10.7554/elife.47994
  103. Griffin, D. R., Dunning, D. C., Cahlander, D. A., & Webster, F. A. (1962). Correlated Orientation Sounds and Ear Movements of Horseshoe Bats. Nature, 196(4860), 1185–1186. https://doi.org/10.1038/1961185a0
  104. Griffin, D. R., Dunning, D. C., Cahlander, D. A., & Webster, F. A. (1962). Correlated Orientation Sounds and Ear Movements of Horseshoe Bats. Nature, 196(4860), 1185–1186. https://doi.org/10.1038/1961185a0
  105. Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The Echolocation of Flying Insects by Bats. Animal Behaviour, 8(3), 141–154. https://doi.org/10.1016/0003-3472(60)90022-1
  106. Griffin, D. R., & Thompson, D. (1982). High Altitude Echolocation of Insects by Bats. Behavioral Ecology and Sociobiology, 10(4), 303–306. https://doi.org/10.1007/BF00302821
  107. Griffin, D. R., & Thompson, D. (1982). High Altitude Echolocation of Insects by Bats. Behavioral Ecology and Sociobiology, 10(4), 303–306. https://doi.org/10.1007/BF00302821
  108. Griffin, D. R. (1944). How Bats Guide Their Flight by Supersonic Echoes. American Journal of Physics, 12(6), 342–345. https://doi.org/10.1119/1.1990634
  109. Griffin, D. R. (1958). Listening in the Dark: The Acoustic Orientation of Bats and Men (pp. xviii, 413). Yale Univer. Press.
  110. Griffin, D. R. (2001). Return to the Magic Well: Echolocation Behavior of Bats and Responses of Insect Prey. BioScience, 51(7), 555–556. https://doi.org/10.1641/0006-3568(2001)051[0555:RTTMWE]2.0.CO;2
  111. Griffin, D. R., & Galambos, R. (1941). The Sensory Basis of Obstacle Avoidance by Flying Bats. Journal of Experimental Zoology, 86(3), 481–506. https://doi.org/10.1002/jez.1400860310
  112. Grinstein, E., Tengan, E., Çakmak, B., Dietzen, T., Nunes, L., van Waterschoot, T., Brookes, M., & Naylor, P. A. (2024). Steered Response Power for Sound Source Localization: A Tutorial Review. EURASIP Journal on Audio, Speech, and Music Processing, 2024(1), 59. https://doi.org/10.1186/s13636-024-00377-z
  113. Gulia, P., & Gupta, A. (2017). Mathematics and Acoustics. In Mathematics Applied to Engineering (pp. 55–82). Elsevier. https://doi.org/10.1016/B978-0-12-810998-4.00003-X
  114. Gunnell, G. F., & Simmons, N. B. (2005). Fossil Evidence and the Origin of Bats. Journal of Mammalian Evolution, 12(1), 209–246. https://doi.org/10.1007/s10914-005-6945-2
  115. Guo, D., Ding, J., Liu, H., Zhou, L., Feng, J., Luo, B., & Liu, Y. (2021). Social Calls Influence the Foraging Behavior in Wild Big-Footed Myotis. Frontiers in Zoology, 18(1), 3. https://doi.org/10.1186/s12983-020-00384-8
  116. Gwilliams, L., & King, J.-R. (2020). Recurrent Processes Support a Cascade of Hierarchical Decisions. ELife, 9. https://doi.org/10.7554/eLife.56603
  117. Hand, S. J., Maugoust, J., Beck, R. M. D., & Orliac, M. J. (2023). A 50-Million-Year-Old, Three-Dimensionally Preserved Bat Skull Supports an Early Origin for Modern Echolocation. Current Biology. https://doi.org/10.1016/j.cub.2023.09.043
  118. Hartley, D. J., & Suthers, R. A. (1988). The Acoustics of the Vocal Tract in the Horseshoe Bat, Rhinolophus Hildebrandti. The Journal of the Acoustical Society of America, 84(4), 1201–1213. https://doi.org/10.1121/1.396621
  119. Hartley, D. J., & Suthers, R. A. (1987). The Sound Emission Pattern and the Acoustical Role of the Noseleaf in the Echolocating Bat, Carollia Perspicillata. The Journal of the Acoustical Society of America, 82(6), 1892–1900. https://doi.org/10.1121/1.395684
  120. Hase, K., Kadoya, Y., Maitani, Y., Miyamoto, T., Kobayasi, K. I., & Hiryu, S. (2018). Bats Enhance Their Call Identities to Solve the Cocktail Party Problem. Communications Biology, 1, 39. https://doi.org/10.1038/s42003-018-0045-3
  121. Hase, K., Miyamoto, T., Kobayasi, K. I., & Hiryu, S. (2016). Rapid Frequency Control of Sonar Sounds by the FM Bat, Miniopterus Fuliginosus, in Response to Spectral Overlap. Behavioural Processes, 128, 126–133. https://doi.org/10.1016/j.beproc.2016.04.017
  122. Havelock, D., Kuwano, S., & Vorländer, M. (Eds.). (2008). Handbook of Signal Processing in Acoustics (1st ed.). Springer New York, NY. https://link.springer.com/book/10.1007/978-0-387-30441-0
  123. Hawkes, A. G. (1971). Spectra of Some Self-Exciting and Mutually Exciting Point Processes. Biometrika, 58(1). https://doi.org/10.1093/biomet/58.1.83
  124. Hawksford, M. J. (1999). MATLAB Program for Loudspeaker Equalization and Crossover Design. Journal of the Audio Engineering Society, 47(9), 706–719. https://www.aes.org/e-lib/browse.cfm?elib=12094
  125. Heikkila, J., & Silven, O. (1997). A Four-Step Camera Calibration Procedure with Implicit Image Correction. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1106–1112. https://doi.org/10.1109/CVPR.1997.609468
  126. Heinrich, M., & Wiegrebe, L. (2013). Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance. PLoS ONE, 8(4), e61577. https://doi.org/10.1371/journal.pone.0061577
  127. He, W., Pedersen, S. C., Gupta, A. K., Simmons, J. A., & Müller, R. (2015). Lancet Dynamics in Greater Horseshoe Bats, Rhinolophus Ferrumequinum. PLOS ONE, 10(4), e0121700. https://doi.org/10.1371/journal.pone.0121700
  128. Hiryu, S., Shiori, Y., Hosokawa, T., Riquimaroux, H., & Watanabe, Y. (2008). On-Board Telemetry of Emitted Sounds from Free-Flying Bats: Compensation for Velocity and Distance Stabilizes Echo Frequency and Amplitude. Journal of Comparative Physiology A, 194(9), 841–851. https://doi.org/10.1007/s00359-008-0355-x
  129. Hoffmann, S., Genzel, D., Prosch, S., Baier, L., Weser, S., Wiegrebe, L., & Firzlaff, U. (2015). Biosonar Navigation above Water I: Estimating Flight Height. Journal of Neurophysiology, 113(4), 1135–1145. https://doi.org/10.1152/jn.00263.2014
  130. Hoffmann, S., Genzel, D., Prosch, S., Baier, L., Weser, S., Wiegrebe, L., & Firzlaff, U. (2015). Biosonar Navigation above Water I: Estimating Flight Height. Journal of Neurophysiology, 113(4), 1135–1145. https://doi.org/10.1152/jn.00263.2014
  131. Hoffmann, S., Vega-Zuniga, T., Greiter, W., Krabichler, Q., Bley, A., Matthes, M., Zimmer, C., Firzlaff, U., & Luksch, H. (2016). Congruent Representation of Visual and Acoustic Space in the Superior Colliculus of the Echolocating Bat \mkbibemphPhyllostomus\mkbibemph Discolor. European Journal of Neuroscience, 44(9), 2685–2697. https://doi.org/10.1111/ejn.13394
  132. Holderied, M. W., Baker, C. J., Vespe, M., & Jones, G. (2007). Understanding Signal Design during the Pursuit of Aerial Insects by Echolocating Bats: Tools and Applications. Integrative and Comparative Biology, 48(1), 74–84. https://doi.org/10.1093/icb/icn035
  133. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to Automata Theory, Languages, and Computation, 2nd Edition. SIGACT News, 32(1), 60–65. https://doi.org/10.1145/568438.568455
  134. Hörpel, S. G., Baier, A. L., Peremans, H., Reijniers, J., Wiegrebe, L., & Firzlaff, U. (2021). Communication Breakdown: Limits of Spectro-Temporal Resolution for the Perception of Bat Communication Calls. Scientific Reports, 11(1), 13708. https://doi.org/10.1038/s41598-021-92842-4
  135. Hörpel, S. G., Baier, A. L., Peremans, H., Reijniers, J., Wiegrebe, L., & Firzlaff, U. (2021). Communication Breakdown: Limits of Spectro-Temporal Resolution for the Perception of Bat Communication Calls. Scientific Reports, 11(1), 13708. https://doi.org/10.1038/s41598-021-92842-4
  136. Hulgard, K., Moss, C. F., Jakobsen, L., & Surlykke, A. (2015). Big Brown Bats (Eptesicus Fuscus) Emit Intense Search Calls and Fly in Stereotyped Flight Paths as They Forage in the Wild. Journal of Experimental Biology, 219(3), 334–340. https://doi.org/10.1242/jeb.128983
  137. ISO9612-2. (1996). Acoustics – Attenuation of Sound during Propagation Outdoors – Part 2 General Method of Calculation. https://www.warrington.gov.uk/sites/default/files/2023-04/CD%204.48%20%20%20%20International%20Standard%20ISO%209613-2%20%E2%80%93%20Acoustics%20%E2%80%93%20Attenuation%20of%20sound%20during%20propagation%20outdoors%20%E2%80%93%20Part%202%20General%20method%20of%20calculation.pdf
  138. Iten, R., Metger, T., Wilming, H., Del Rio, L., & Renner, R. (2020). Discovering Physical Concepts with Neural Networks. Physical Review Letters, 124(1), 010508. https://doi.org/10.1103/PhysRevLett.124.010508
  139. Jacobs, D. S., & Bastian, A. (2016). Predator–Prey Interactions: Co-evolution between Bats and Their Prey. https://doi.org/10.1007/978-3-319-32492-0
  140. Jadhav, S. P., Wolfe, J., & Feldman, D. E. (2009). Sparse Temporal Coding of Elementary Tactile Features during Active Whisker Sensation. Nature Neuroscience, 12(6), 792–800. https://doi.org/10.1038/nn.2328
  141. Jadhav, S. P., & Feldman, D. E. (2010). Texture Coding in the Whisker System. Current Opinion in Neurobiology, 20(3), 313–318. https://doi.org/10.1016/j.conb.2010.02.014
  142. Jakobsen, L., Ratcliffe, J. M., & Surlykke, A. (2013). Convergent Acoustic Field of View in Echolocating Bats. Nature, 493(7430), 93–96. https://doi.org/10.1038/nature11664
  143. Jakobsen, L., Brinkløv, S., & Surlykke, A. (2013). Intensity and Directionality of Bat Echolocation Signals. Frontiers in Physiology, 4, 89. https://doi.org/10.3389/fphys.2013.00089
  144. Jakobsen, L., Wisniewska, D. M., Häfele, F. T., Rajaeasparan, J. T., Nielsen, J. B., & Ratcliffe, J. M. (2025). Velocity as an Overlooked Driver in the Echolocation Behavior of Aerial Hawking Vespertilionid Bats. Current Biology, S096098222401710X. https://doi.org/10.1016/j.cub.2024.12.042
  145. Jakobsen, L., & Surlykke, A. (2010). Vespertilionid Bats Control the Width of Their Biosonar Sound Beam Dynamically during Prey Pursuit. Proceedings of the National Academy of Sciences, 107(31), 13930–13935. https://doi.org/10.1073/pnas.1006630107
  146. Jebb, D., Huang, Z., Pippel, M., Hughes, G. M., Lavrichenko, K., Devanna, P., Winkler, S., Jermiin, L. S., Skirmuntt, E. C., Katzourakis, A., Burkitt-Gray, L., Ray, D. A., Sullivan, K. A. M., Roscito, J. G., Kirilenko, B. M., Dávalos, L. M., Corthals, A. P., Power, M. L., Jones, G., … Teeling, E. C. (2020). Six Reference-Quality Genomes Reveal Evolution of Bat Adaptations. Nature, 583(7817), 578–584. https://doi.org/10.1038/s41586-020-2486-3
  147. Jens, K. Arrayvolution: Using Microphone Arrays to Study Bats in the Field. Retrieved June 1, 2025, from https://cdnsciencepub.com/doi/10.1139/cjz-2017-0187
  148. Jewell, W. S. (1960). The Properties of Recurrent-Event Processes. Operations Research. https://doi.org/10.1287/opre.8.4.446
  149. Johnson, M., Hickmott, L. S., Aguilar Soto, N., & Madsen, P. T. (2008). Echolocation Behaviour Adapted to Prey in Foraging Blainville’s Beaked Whale (Mesoplodon Densirostris). Proceedings. Biological Sciences, 275(1631), 133–139. https://doi.org/10.1098/rspb.2007.1190
  150. Jones, G., & Holderied, M. W. (2007). Bat Echolocation Calls: Adaptation and Convergent Evolution. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 905–912. https://doi.org/10.1098/rspb.2006.0200
  151. Jones, G., & Holderied, M. W. (2007). Bat Echolocation Calls: Adaptation and Convergent Evolution. Proceedings. Biological Sciences, 274(1612), 905–912. https://doi.org/10.1098/rspb.2006.0200
  152. Jones, G., & Siemers, B. M. (2011). The Communicative Potential of Bat Echolocation Pulses. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 447–457. https://doi.org/10.1007/s00359-010-0565-x
  153. Jones, G., & Siemers, B. M. (2011). The Communicative Potential of Bat Echolocation Pulses. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 447–457. https://doi.org/10.1007/s00359-010-0565-x
  154. Jones, G., & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001
  155. Jones, G., & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001
  156. Jones, T. K., & Conner, W. E. (2019). The Jamming Avoidance Response in Echolocating Bats. Communicative & Integrative Biology, 12(1), 10–13. https://doi.org/10.1080/19420889.2019.1568818
  157. Jones, P. L., Ryan, M. J., & Page, R. A. (2014). Population and Seasonal Variation in Response to Prey Calls by an Eavesdropping Bat. Behavioral Ecology and Sociobiology, 68(4), 605–615. https://doi.org/10.1007/s00265-013-1675-6
  158. Jones, G. (1994). Scaling of Wingbeat and Echolocation Pulse Emission Rates in Bats: Why Are Aerial Insectivorous Bats so Small? Functional Ecology, 8(4), 450–457. https://doi.org/10.2307/2390068
  159. Jung, K., Kalko, E. K. V., & Helversen, O. V. (2007). Echolocation Calls in Central American Emballonurid Bats: Signal Design and Call Frequency Alternation. Journal of Zoology, 272(2), 125–137. https://doi.org/10.1111/j.1469-7998.2006.00250.x
  160. Kalko, E. K. V., & Schnitzler, H.-U. (1989). The Echolocation and Hunting Behavior of Daubenton’s Bat, Myotis Daubentoni. Behavioral Ecology and Sociobiology, 24(4), 225–238. https://doi.org/10.1007/BF00295202
  161. Kalko, E. K. V., & Schnitzler, H.-U. (1993). Plasticity in Echolocation Signals of European Pipistrelle Bats in Search Flight: Implications for Habitat Use and Prey Detection. Behavioral Ecology and Sociobiology, 33(6), 415–428. https://doi.org/10.1007/bf00170257
  162. Kalman, R. E. (1960). On the General Theory of Control Systems. IFAC Proceedings Volumes, 1(1), 491–502. https://doi.org/10.1016/S1474-6670(17)70094-8
  163. Kane, S. A., & Zamani, M. (2014). Falcons Pursue Prey Using Visual Motion Cues: New Perspectives from Animal-Borne Cameras. Journal of Experimental Biology, 217(2), 225–234. https://doi.org/10.1242/jeb.092403
  164. Kick, S. A., & Simmons, J. A. (1984). Automatic Gain Control in the Bat’s Sonar Receiver and the Neuroethology of Echolocation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 4(11), 2725–2737. https://doi.org/10.1523/jneurosci.04-11-02725.1984
  165. Kim, D., DeBriere, T. J., Cherukumalli, S., White, G. S., & Burkett-Cadena, N. D. (2021). Infrared Light Sensors Permit Rapid Recording of Wingbeat Frequency and Bioacoustic Species Identification of Mosquitoes. Scientific Reports, 11(1), 10042. https://doi.org/10.1038/s41598-021-89644-z
  166. King, S. L., Friedman, W. R., Allen, S. J., Gerber, L., Jensen, F. H., Wittwer, S., Connor, R. C., & Krützen, M. (2018). Bottlenose Dolphins Retain Individual Vocal Labels in Multi-level Alliances. Current Biology, 28(12), 1993–1999.e3. https://doi.org/10.1016/j.cub.2018.05.013
  167. Knowles, J. M., Barchi, J. R., Gaudette, J. E., & Simmons, J. A. (2015). Effective Biosonar Echo-to-Clutter Rejection Ratio in a Complex Dynamic Scene. The Journal of the Acoustical Society of America, 138(2), 1090–1101. https://doi.org/10.1121/1.4915001
  168. Koblitz, J. C. (2018). Arrayvolution: Using Microphone Arrays to Study Bats in the Field. Canadian Journal of Zoology, 96(9), 933–938. https://doi.org/10.1139/cjz-2017-0187
  169. Koblitz, J. C., Stilz, P., & Schnitzler, H.-U. (2010). Source Levels of Echolocation Signals Vary in Correlation with Wingbeat Cycle in Landing Big Brown Bats (Eptesicus Fuscus). Journal of Experimental Biology, 213(19), 3263–3268. https://doi.org/10.1242/jeb.045450
  170. Kopsinis, Y., Aboutanios, E., Waters, D. A., & McLaughlin, S. (2009). Investigation of Bat Echolocation Calls Using High Resolution Spectrogram and Instantaneous Frequency Based Analysis. 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 557–560. https://doi.org/10.1109/ssp.2009.5278516
  171. Kothari, N. B., Wohlgemuth, M. J., Hulgard, K., Surlykke, A., & Moss, C. F. (2014). Timing Matters: Sonar Call Groups Facilitate Target Localization in Bats. Frontiers in Physiology, 5. https://doi.org/10.3389/fphys.2014.00168
  172. Kounitsky, P., Rydell, J., Amichai, E., Boonman, A., Eitan, O., Weiss, A. J., & Yovel, Y. (2015). Bats Adjust Their Mouth Gape to Zoom Their Biosonar Field of View. Proceedings of the National Academy of Sciences, 112(21), 6724–6729. https://doi.org/10.1073/pnas.1422843112
  173. Kuc, R. (2011). Bat Noseleaf Model: Echolocation Function, Design Considerations, and Experimental Verification. The Journal of the Acoustical Society of America, 129(5), 3361–3366. https://doi.org/10.1121/1.3569703
  174. Kuc, R. (2009). Model Predicts Bat Pinna Ridges Focus High Frequencies to Form Narrow Sensitivity Beams. The Journal of the Acoustical Society of America, 125(5), 3454. https://doi.org/10.1121/1.3097500
  175. Kuc, R. (2010). Morphology Suggests Noseleaf and Pinnae Cooperate to Enhance Bat Echolocation. The Journal of the Acoustical Society of America, 128(5), 3190–3199. https://doi.org/10.1121/1.3488304
  176. Kugler, K., & Wiegrebe, L. (2017). Echo-Acoustic Scanning with Noseleaf and Ears in Phyllostomid Bats. Journal of Experimental Biology, 220(15), 2816–2824. https://doi.org/10.1242/jeb.160309
  177. Kwiecinski, G. G. (2006). Phyllostomus Discolor. Mammalian Species, 801, 1–11. https://doi.org/10.1644/801.1
  178. Lasky, P. D., Thrane, E., Levin, Y., Blackman, J., & Chen, Y. (2016). Detecting Gravitational-Wave Memory with LIGO: Implications of GW150914. Physical Review Letters, 117(6), 061102. https://doi.org/10.1103/PhysRevLett.117.061102
  179. Lattenkamp, E. Z., Nagy, M., Drexl, M., Vernes, S. C., Wiegrebe, L., & Kneornschild, M. (2021). Hearing Sensitivity and Amplitude Coding in Bats Are Differentially Shaped by Echolocation Calls and Social Calls. Proceedings of the Royal Society B: Biological Sciences, 288(1942), 20202600. https://doi.org/10.1098/rspb.2020.2600
  180. Lattenkamp, E. Z., Vernes, S. C., & Wiegrebe, L. (2020). Vocal Production Learning in the Pale Spear-Nosed Bat, Phyllostomus Discolor. Biology Letters, 16(4), 20190928. https://doi.org/10.1098/rsbl.2019.0928
  181. Lawrence, B. D., & Simmons, J. A. (1982). Echolocation in Bats: The External Ear and Perception of the Vertical Positions of Targets. Science, 218(4571), 481–483. https://doi.org/10.1126/science.7123247
  182. Lazure, L., & Fenton, M. B. (2011). High Duty Cycle Echolocation and Prey Detection by Bats. Journal of Experimental Biology, 214(7), 1131–1137. https://doi.org/10.1242/jeb.048967
  183. Lee, W.-J., Falk, B., Chiu, C., Krishnan, A., Arbour, J. H., & Moss, C. F. (2017). Tongue-Driven Sonar Beam Steering by a Lingual-Echolocating Fruit Bat. PLoS Biology, 15(12), e2003148. https://doi.org/10.1371/journal.pbio.2003148
  184. Leis, J. W. (2011). Digital Signal Processing Using MATLAB for Students and Researchers. John Wiley & Sons, Inc.
  185. Leiser‐Miller, L. B., & Santana, S. E. (2021). Functional Differences in Echolocation Call Design in an Adaptive Radiation of Bats. Ecology and Evolution, 11(22), 16153–16164. https://doi.org/10.1002/ece3.8296
  186. Leiser-Miller, L. B., & Santana, S. E. (2020). Morphological Diversity in the Sensory System of Phyllostomid Bats: Implications for Acoustic and Dietary Ecology. Functional Ecology, 34(7), 1416–1427. https://doi.org/10.1111/1365-2435.13561
  187. Li, X., Wang, H., Wang, X., Bao, M., Sun, R., Dai, W., Sun, K., & Feng, J. (2024). Molecular Adaptations Underlying High-Frequency Hearing in the Brain of CF Bats Species. BMC Genomics, 25(1), 279. https://doi.org/10.1186/s12864-024-10212-6
  188. Lin, Y., Abaid, N., & Müller, R. (2016). Bats Adjust Their Pulse Emission Rates with Swarm Size in the Field. The Journal of the Acoustical Society of America, 140(6), 4318. https://doi.org/10.1121/1.4971331
  189. Linnenschmidt, M., & Wiegrebe, L. (2016). Sonar Beam Dynamics in Leaf-Nosed Bats. Scientific Reports, 6(1), 29222. https://doi.org/10.1038/srep29222
  190. Llopis-Albert, C., Venegas Toro, W. R., Farhat, N., Zamora-Ortiz, P., & Page Del Pozo, A. F. (2021). A New Method for Time Normalization Based on the Continuous Phase: Application to Neck Kinematics. Mathematics, 9(23), 3138. https://doi.org/10.3390/math9233138
  191. López-González, C., & Ocampo-Ramírez, C. (2022). External Ears in Chiroptera: Form-Function Relationships in an Ecological Context. Acta Chiropterologica, 23(2). https://doi.org/10.3161/15081109ACC2021.23.2.019
  192. Lourie, E., Shamay, T., Toledo, S., & Nathan, R. (2024). Spatial Memory Obviates Following Behaviour in an Information Centre of Wild Fruit Bats. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 379(1912), 20240060. https://doi.org/10.1098/rstb.2024.0060
  193. Lu, M., Zhang, G., & Luo, J. (2020). Echolocating Bats Exhibit Differential Amplitude Compensation for Noise Interference at a Sub-Call Level. Journal of Experimental Biology, 223(19), jeb225284. https://doi.org/10.1242/jeb.225284
  194. Luo, J., & Wiegrebe, L. (2016). Biomechanical Control of Vocal Plasticity in an Echolocating Bat. Journal of Experimental Biology, jeb.134957. https://doi.org/10.1242/jeb.134957
  195. Luo, J., Lu, M., Luo, J., & Moss, C. F. (2022). Echo Feedback Mediates Noise-Induced Vocal Modifications in Flying Bats. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01585-8
  196. Luo, J. (2015). Linking the Sender to the Receiver: Vocal Adjustments by Bats to Maintain Signal Detection in Noise. Scientific Reports, 11.
  197. Luo, J., Lingner, A., Firzlaff, U., & Wiegrebe, L. (2016). The Lombard Effect Emerges Early in Young Bats: Implications for the Development of Audio-Vocal Integration. Journal of Experimental Biology, jeb.151050. https://doi.org/10.1242/jeb.151050
  198. MacDonald, J. A., & Tran, P. K. (2007). Loudspeaker Equalization for Auditory Research. Behavior Research Methods, 39(1), 133–136. https://doi.org/10.3758/BF03192851
  199. Mackey, R. L., & Barclay, R. M. R. (1989). The Infl1uence of Physical Clutter and Noise on the Activity of Bats over Water. Canadian Journal of Zoology, 67(5), 1167–1170. https://doi.org/10.1139/z89-168
  200. Madsen, P. T., & Surlykke, A. (2013). Functional Convergence in Bat and Toothed Whale Biosonars. Physiology (Bethesda, Md.), 28(5), 276–283. https://doi.org/10.1152/physiol.00008.2013
  201. Madsen, P. T., & Wahlberg, M. (2007). Recording and Quantification of Ultrasonic Echolocation Clicks from Free-Ranging Toothed Whales. Deep Sea Research Part I: Oceanographic Research Papers, 54(8), 1421–1444. https://doi.org/10.1016/j.dsr.2007.04.020
  202. Malinka, C. E., Rojano-Doñate, L., & Madsen, P. T. (2021). Directional Biosonar Beams Allow Echolocating Harbour Porpoises to Actively Discriminate and Intercept Closely Spaced Targets. Journal of Experimental Biology, 224(16), jeb242779. https://doi.org/10.1242/jeb.242779
  203. Marshall, K. L., Chadha, M., deSouza, L. A., Sterbing-D’Angelo, S. J., Moss, C. F., & Lumpkin, E. A. (2015). Somatosensory Substrates of Flight Control in Bats. Cell Reports, 11(6), 851–858. https://doi.org/10.1016/j.celrep.2015.04.001
  204. Marwan, N., Carmen Romano, M., Thiel, M., & Kurths, J. (2007). Recurrence Plots for the Analysis of Complex Systems. Physics Reports, 438(5), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001
  205. Ma, X., Zhang, S., Dong, Z., Lu, H., Li, J., & Zhou, W. (2020). Special Acoustical Role of Pinna Simplifying Spatial Target Localization by the Brown Long-Eared Bat Plecotus Auritus. Physical Review E, 102(4), 040401. https://doi.org/10.1103/physreve.102.040401
  206. Matsuta, N., Hiryu, S., Fujioka, E., Yamada, Y., Riquimaroux, H., & Watanabe, Y. (2013). Adaptive Beam-Width Control of Echolocation Sounds by CF–FM Bats, Rhinolophus Ferrumequinum Nippon, during Prey-Capture Flight. Journal of Experimental Biology, 216(7), 1210–1218. https://doi.org/10.1242/jeb.081398
  207. Mazar, O., & Yovel, Y. (2020). A Sensorimotor Model Shows Why a Spectral Jamming Avoidance Response Does Not Help Bats Deal with Jamming. ELife, 9, e55539. https://doi.org/10.7554/eLife.55539
  208. McCracken, G. F., Gillam, E. H., Westbrook, J. K., Lee, Y.-F., Jensen, M. L., & Balsley, B. B. (2007). Brazilian Free-Tailed Bats (Tadarida Brasiliensis: Molossidae, Chiroptera) at High Altitude: Links to Migratory Insect Populations. Integrative and Comparative Biology, 48(1), 107–118. https://doi.org/10.1093/icb/icn033
  209. Metzner, W. (1993). An Audio-Vocal Interface in Echolocating Horseshoe Bats. Journal of Neuroscience, 13(5), 1899–1915. https://doi.org/10.1523/JNEUROSCI.13-05-01899.1993
  210. Metzner, W. (1989). A Possible Neuronal Basis for Doppler-shift Compensation in Echo-Locating Horseshoe Bats. Nature, 341(6242), 529–532. https://doi.org/10.1038/341529a0
  211. Miller, L. A., & Surlykke, A. (2001). How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator. BioScience, 51(7), 570. https://doi.org/10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2
  212. Ming, C., Gupta, A. K., Lu, R., Zhu, H., & Müller, R. (2017). A Computational Model for Biosonar Echoes from Foliage. PLOS ONE, 12(8), e0182824. https://doi.org/10.1371/journal.pone.0182824
  213. Ming, C., Zhu, H., & Müller, R. (2017). A Simplified Model of Biosonar Echoes from Foliage and the Properties of Natural Foliages. PLOS ONE, 12(12), e0189824. https://doi.org/10.1371/journal.pone.0189824
  214. Mizuguchi, Y., Fujioka, E., Heim, O., Fukui, D., & Hiryu, S. (2022). Discriminating Predation Attempt Outcomes during Natural Foraging Using the Post-Buzz Pause in the Japanese Large-Footed Bat, Myotis Macrodactylus. Journal of Experimental Biology, 225(7), jeb243402. https://doi.org/10.1242/jeb.243402
  215. Mogdans, J., Ostwald, J., & Schnitzler, H. U. (1988). The Role of Pinna Movement for the Localization of Vertical and Horizontal Wire Obstacles in the Greater Horseshoe Bat, R h i n o l o p u s f e r r u m e q u i n u m. The Journal of the Acoustical Society of America, 84(5), 1676–1679. https://doi.org/10.1121/1.397183
  216. Mogensen, F., & Mohl, B. (1979). Sound Radiation Patterns in the Frequency Domain of Cries from a Vespertilionid Bat. Journal of Comparative Physiology ? A, 134(2), 165–171. https://doi.org/10.1007/BF00610475
  217. Montoya, J., Lee, Y., & Salles, A. (2022). Social Communication in Big Brown Bats. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.903107
  218. Moss, C. F., Bohn, K., Gilkenson, H., & Surlykke, A. (2006). Active Listening for Spatial Orientation in a Complex Auditory Scene. PLOS Biology, 4(4), e79. https://doi.org/10.1371/journal.pbio.0040079
  219. Moss, C. (2012). Adaptive Echolocation Behavior in a Complex Sonar Scene. The Journal of the Acoustical Society of America, 131, 3360–3360. https://doi.org/10.1121/1.4708649
  220. Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive Vocal Behavior Drives Perception by Echolocation in Bats. Current Opinion in Neurobiology, 21(4), 645–652. https://doi.org/10.1016/j.conb.2011.05.028
  221. Moss, C. F., & Surlykke, A. (2001). Auditory Scene Analysis by Echolocation in Bats. The Journal of the Acoustical Society of America, 110(4), 2207–2226. https://doi.org/10.1121/1.1398051
  222. Moss, C., Ghose, K., & Surlykke, A. (2008). The Echolocating Bat Controls the Direction and Distance of Its Acoustic Gaze.
  223. Moss, C. F., & Surlykke, A. (2010). Probing the Natural Scene by Echolocation in Bats. Frontiers in Behavioral Neuroscience, 4. https://doi.org/10.3389/fnbeh.2010.00033
  224. Mulla, D. M., & Keir, P. J. (2023). Neuromuscular Control: From a Biomechanist’s Perspective. Frontiers in Sports and Active Living, 5. https://doi.org/10.3389/fspor.2023.1217009
  225. Mulla, D. M., & Keir, P. J. (2023). Neuromuscular Control: From a Biomechanist’s Perspective. Frontiers in Sports and Active Living, 5. https://doi.org/10.3389/fspor.2023.1217009
  226. Müller, R. (2010). Numerical Analysis of Biosonar Beamforming Mechanisms and Strategies in Bats. The Journal of the Acoustical Society of America, 128(3), 1414. https://doi.org/10.1121/1.3365246
  227. Müller, R., Lu, H., & Buck, J. R. (2008). Sound-Diffracting Flap in the Ear of a Bat Generates Spatial Information. Physical Review Letters, 100(10), 108701. https://doi.org/10.1103/PhysRevLett.100.108701
  228. Nachtigall, P. E. (1989). Animal Sonar: Processes and Performance (Number v.156). Springer.
  229. Nehorai, A., & Paldi, E. (1994). Acoustic Vector-Sensor Array Processing. IEEE Transactions on Signal Processing, 42(9), 2481–2491. https://doi.org/10.1109/78.317869
  230. Neil, T. R., Shen, Z., Robert, D., Drinkwater, B. W., & Holderied, M. W. (2022). Moth Wings as Sound Absorber Metasurface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2262), 20220046. https://doi.org/10.1098/rspa.2022.0046
  231. Neil, T. R., Kennedy, E. E., Harris, B. J., & Holderied, M. W. (2021). Wingtip Folds and Ripples on Saturniid Moths Create Decoy Echoes against Bat Biosonar. Curr Biol, 31(21), 4824–4830.e3. https://doi.org/10.1016/j.cub.2021.08.038
  232. Neuweiler, G. (1990). Auditory Adaptations for Prey Capture in Echolocating Bats. Physiological Reviews, 70(3), 615–641. https://doi.org/10.1152/physrev.1990.70.3.615
  233. Neuweiler, G. (1989). Foraging Ecology and Audition in Echolocating Bats. Trends in Ecology & Evolution, 4(6), 160–166. https://doi.org/10.1016/0169-5347(89)90120-1
  234. Nguyen, T. H., & Vanderelst, D. (2022). Toward Behavior-Based Models of Bat Echolocation. 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 1529–1536. https://doi.org/10.1109/SSCI51031.2022.10022100
  235. Norberg, U. M., & Rayner, J. M. V. (1987). Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1179), 335–427. https://doi.org/10.1098/rstb.1987.0030
  236. Ntelezos, A., Guarato, F., & Windmill, J. F. C. (2016). The Anti-Bat Strategy of Ultrasound Absorption: The Wings of Nocturnal Moths (Bombycoidea: Saturniidae) Absorb More Ultrasound than the Wings of Diurnal Moths (Chalcosiinae: Zygaenoidea: Zygaenidae). Biology Open, bio.021782. https://doi.org/10.1242/bio.021782
  237. Nuzzo, R. (2004). P Values, the ‘Gold Standard’ of Statistical Validity, Are Not as Reliable as Many Scientists Assume. 3.
  238. Obrist, M. K., Fenton, M. B., Eger, J. L., & Schlegel, P. A. (1993). What Ears Do for Bats: A Comparative Study of Pinna Sound Pressure Transformation in Chiroptera. The Journal of Experimental Biology, 180, 119–152.
  239. Ogata, Y., & Akaike, H. (1982). On Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self- Exciting Point Processes. Journal of the Royal Statistical Society. Series B (Methodological), 44(1), 102–107. https://www.jstor.org/stable/2984715
  240. O’Neill, M. G., & Taylor, R. J. (1986). Observations on the Flight Patterns and Foraging Behaviour of Tasmanian Bats. Wildlife Research, 13(3), 427–432. https://doi.org/10.1071/wr9860427
  241. Otani, M., & Ise, S. (2006). Fast Calculation System Specialized for Head-Related Transfer Function Based on Boundary Element Method. The Journal of the Acoustical Society of America, 119(5), 2589–2598. https://doi.org/10.1121/1.2191608
  242. Pedersen, M. B., Uebel, A. S., Beedholm, K., Foskolos, I., Stidsholt, L., & Madsen, P. T. (2022). Echolocating Daubenton’s Bats Call Louder, but Show No Spectral Jamming Avoidance in Response to Bands of Masking Noise during a Landing Task. Journal of Experimental Biology, 225(7), jeb243917. https://doi.org/10.1242/jeb.243917
  243. Pedersen, M. B., Egenhardt, M., Beedholm, K., Skalshøi, M. R., Uebel, A. S., Hubancheva, A., Koseva, K., Moss, C. F., Luo, J., Stidsholt, L., & Madsen, P. T. (2024). Superfast Lombard Response in Free-Flying, Echolocating Bats. Current Biology, 0(0). https://doi.org/10.1016/j.cub.2024.04.048
  244. Pedrozo, A. R., Gomes, L. A. C., & Uieda, W. (2018). Feeding Behavior and Activity Period of Three Neotropical Bat Species (Chiroptera: Phyllostomidae) on \mkbibemphMusa\mkbibemph Paradisiaca Inflorescences (Zingiberales: Musaceae). Iheringia. Série Zoologia, 108. https://doi.org/10.1590/1678-4766e2018022
  245. Perceptual Hearing Sensitivity during Vocal Production | Elsevier Enhanced Reader. https://doi.org/10.1016/j.isci.2022.105435
  246. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., … Project, T. S. C. (1999). Measurements of Ω and Λ from 42 High‐Redshift Supernovae. The Astrophysical Journal, 517(2), 565–586. https://doi.org/10.1086/307221
  247. Perrine, J. O. (1944). The Doppler and Echo Doppler Effect. American Journal of Physics, 12(1), 23–28. https://doi.org/10.1119/1.1990527
  248. Prat, Y., & Yovel, Y. (2020). Decision Making in Foraging Bats. Current Opinion in Neurobiology, 60, 169–175. https://doi.org/10.1016/j.conb.2019.12.006
  249. Pye, J. D., & Roberts, L. H. (1970). Ear Movements in a Hipposiderid Bat. Nature, 225(5229), 285–286. https://doi.org/10.1038/225285a0
  250. Pye, J. D. (1993). IS FIDELITY FUTILE? THE ‘TRUE’ SIGNAL IS ILLUSORY, ESPECIALLY WITH ULTRASOUND. Bioacoustics, 4(4), 271–286. https://doi.org/10.1080/09524622.1993.10510438
  251. Qiu, P., & Müller, R. (2020). Variability in the Rigid Pinna Motions of Hipposiderid Bats and Their Impact on Sensory Information Encoding. The Journal of the Acoustical Society of America, 147(1), 469. https://doi.org/10.1121/10.0000582
  252. Ratcliffe, J. M., & Jakobsen, L. (2018). Don’t Believe the Mike: Behavioural, Directional, and Environmental Impacts on Recorded Bat Echolocation Call Measures. Canadian Journal of Zoology, 96(4), 283–288. https://doi.org/10.1139/cjz-2017-0219
  253. Ratcliffe, J. (2015). Ultrasonic and Superfast: Design Constraints on Echolocation in Bats. The Journal of the Acoustical Society of America, 138, 1931–1931. https://doi.org/10.1121/1.4934086
  254. Register Reference - FLIR Machine Vision Cameras. (2017). FLIR Integrated Imaging Solutions Inc. https://www.flir.de/globalassets/support/iis/knowledge-base/flir-machine-vision-camera-register-reference.pdf
  255. Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., & Tonry, J. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116(3), 1009. https://doi.org/10.1086/300499
  256. Rocchesso, D. (2003). Introduction to Sound Processing. Mondo estremo.
  257. Rojas, D., Vale, A., Ferrero, V., & Navarro, L. (2012). The Role of Frugivory in the Diversification of Bats in the Neotropics. Journal of Biogeography, 39(11), 1948–1960. https://doi.org/10.1111/j.1365-2699.2012.02709.x
  258. Rojas, D., Vale, A., Ferrero, V., & Navarro, L. (2011). When Did Plants Become Important to Leaf-Nosed Bats? Diversification of Feeding Habits in the Family Phyllostomidae: EVOLUTION OF FEEDING HABITS IN PHYLLOSTOMID BATS. Molecular Ecology, 20(10), 2217–2228. https://doi.org/10.1111/j.1365-294X.2011.05082.x
  259. Rossing, T. D. (Ed.). (2014). Springer Handbook of Acoustics (2nd ed.).
  260. Rovina, H., Salam, T., Kantaros, Y., & Ani Hsieh, M. (2020). Asynchronous Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot Teams via Intermittently Connected Networks. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4798–4805. https://doi.org/10.1109/IROS45743.2020.9341636
  261. Salles, A., Diebold, C. A., & F. Moss, C. (2021). Bat Target Tracking Strategies for Prey Interception. Communicative & Integrative Biology, 14(1), 37–40. https://doi.org/10.1080/19420889.2021.1898751
  262. Sanderson, M. I., & Simmons, J. A. (2000). Neural Responses to Overlapping FM Sounds in the Inferior Colliculus of Echolocating Bats. Journal of Neurophysiology, 83(4), 1840–1855. https://doi.org/10.1152/jn.2000.83.4.1840
  263. Schmidt, S., & Thaller, J. (1994). Temporal Auditory Summation in the Echolocating Bat, \mkbibemphTadarida\mkbibemph Brasiliensis. Hearing Research, 77(1), 125–134. https://doi.org/10.1016/0378-5955(94)90260-7
  264. Schneider, H., & Möhres, F. P. (1960). Die Ohrbewegungen Der Hufeisenfledermäuse (Chiroptera, Rhinolophidae) Und Der Mechanismus Des Bildhörens. Zeitschrfft Fiir Vergleicheinde Physiologie, 44(1), 40.
  265. Schneider, H. (1960). Die Ohrmuskulature von Asellia tridens GEOFFR. (Hipposideridae) und Myotis myotis BORKH (Vespertilionidae) (Chiroptera).
  266. SCHNITZLER, H. A. N. S.-U. L. R. I. C. H., & KALKO, E. L. I. S. A. B. E. T. H. K. V. (2001). Echolocation by Insect-Eating Bats. BioScience, 51(7), 557. https://doi.org/10.1641/0006-3568(2001)051[0557:ebieb]2.0.co;2
  267. Schoeppler, D., Kost, K., Schnitzler, H.-U., & Denzinger, A. (2022). Transmitter and Receiver of the Low Frequency Horseshoe Bat Rhinolophus Paradoxolophus Are Functionally Matched for Fluttering Target Detection. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01571-0
  268. Schoeppler, D., Kost, K., Schnitzler, H.-U., & Denzinger, A. (2023). Transmitter and Receiver of the Low Frequency Horseshoe Bat Rhinolophus Paradoxolophus Are Functionally Matched for Fluttering Target Detection. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 209(1), 191–202. https://doi.org/10.1007/s00359-022-01571-0
  269. Schuller, G., Beuter, K., & R�bsamen, R. (1975). Dynamic Properties of the Compensation System for Doppler Shifts in the Bat,Rhinolophus Ferrumequinum. Journal of Comparative Physiology ? A, 97(2), 113–125. https://doi.org/10.1007/BF00645356
  270. Schuller, G. (1977). Echo Delay and Overlap with Emitted Orientation Sounds and Doppler-Shift Compensation in the Bat,Rhinolophus Ferrumequinum. Journal of Comparative Physiology, 114(1), 103–114. https://doi.org/10.1007/BF00656811
  271. Schuller, G. (1986). Influence of Echolocation Pulse Rate on Doppler Shift Compensation Control System in the Greater Horseshoe Bat. Journal of Comparative Physiology A, 158(2), 239–246. https://doi.org/10.1007/BF01338567
  272. Schuller, G. (1974). The Role of Overlap of Echo with Outgoing Echolocation Sound in the Bat Rhinolophus Ferrumequinum. Naturwissenschaften, 61(4), 171–172. https://doi.org/10.1007/BF00602598
  273. Seibert, A.-M., Koblitz, J. C., Denzinger, A., & Schnitzler, H.-U. (2013). Scanning Behavior in Echolocating Common Pipistrelle Bats (Pipistrellus Pipistrellus). PLoS ONE, 8(4), e60752. https://doi.org/10.1371/journal.pone.0060752
  274. Shi, J. J., & Rabosky, D. L. (2015). Speciation Dynamics during the Global Radiation of Extant Bats. Evolution, 69(6), 1528–1545. https://doi.org/10.1111/evo.12681
  275. Shriram, U., & Simmons, J. A. (2019). Echolocating Bats Perceive Natural-Size Targets as a Unitary Class Using Micro-Spectral Ripples in Echoes. Behavioral Neuroscience, 133(3), 297–304. https://doi.org/10.1037/bne0000315
  276. Simmons, J. A., & Stein, R. A. (1980). Acoustic Imaging in Bat Sonar: Echolocation Signals and the Evolution of Echolocation. Journal of Comparative Physiology, 135(1), 61–84. https://doi.org/10.1007/bf00660182
  277. Simmons, J. A., Saillant, P. A., Wotton, J. M., Haresign, T., Ferragamo, M. J., & Moss, C. F. (1995). Composition of Biosonar Images for Target Recognition by Echolocating Bats. Neural Networks, 8(7–8), 1239–1261. https://doi.org/10.1016/0893-6080(95)00059-3
  278. Simmons, J. A., Moss, C. F., & Ferragamo, M. (1990). Convergence of Temporal and Spectral Information into Acoustic Images of Complex Sonar Targets Perceived by the Echolocating Bat, Eptesicus Fuscus. Journal of Comparative Physiology A, 166(4), 449–470. https://doi.org/10.1007/BF00192016
  279. Simmons, J. A., Kick, S. A., & Lawrence, B. D. (1984). Echolocation and Hearing in the Mouse-Tailed Bat,Rhinopoma Hardwickei: Acoustic Evolution of Echolocation in Bats. Journal of Comparative Physiology A, 154(3), 347–356. https://doi.org/10.1007/bf00605234
  280. Simmons, J. A. (1997). Encyclopedia of Acoustics. 1819–1822. https://doi.org/10.1002/9780470172544.ch151
  281. Simmons, J. A. (1979). Perception of Echo Phase Information in Bat Sonar. Science, 204(4399), 1336–1338. https://doi.org/10.1126/science.451543
  282. Simmons, J. A., Hom, K. N., & Simmons, A. M. (2023). Temporal Coherence of Harmonic Frequencies Affects Echo Detection in the Big Brown Bat, \mkbibemphEptesicus\mkbibemph Fuscus. The Journal of the Acoustical Society of America, 154(5), 3321–3327. https://doi.org/10.1121/10.0022444
  283. Simmons, J. A. (1989). A View of the World through the Bat’s Ear: The Formation of Acoustic Images in Echolocation. Cognition, 33(1–2), 155–199. https://doi.org/10.1016/0010-0277(89)90009-7
  284. Sleep, D. J. H., & Brigham, R. M. (2003). An Experimental Test of Clutter Tolerance in Bats. Journal of Mammalogy, 84(1), 216–224. https://doi.org/10.1644/1545-1542(2003)084<0216:AETOCT>2.0.CO;2
  285. Smarsh, G. C., Tarnovsky, Y., & Yovel, Y. (2021). Hearing, Echolocation, and Beam Steering from Day 0 in Tongue-Clicking Bats. Proceedings. Biological Sciences, 288(1961), 20211714. https://doi.org/10.1098/rspb.2021.1714
  286. Smarsh, G. C., Tarnovsky, Y., & Yovel, Y. (2021). Hearing, Echolocation, and Beam Steering from Day 0 in Tongue-Clicking Bats. Proceedings. Biological Sciences, 288(1961), 20211714. https://doi.org/10.1098/rspb.2021.1714
  287. Snyder, E. R., Solsona-Berga, A., Baumann-Pickering, S., Frasier, K. E., Wiggins, S. M., & Hildebrand, J. A. (2024). Where’s Whaledo: A Software Toolkit for Array Localization of Animal Vocalizations. PLOS Computational Biology, 20(5), e1011456. https://doi.org/10.1371/journal.pcbi.1011456
  288. Source Separation with an Acoustic Vector Sensor for Terrestrial Bioacoustics | The Journal of the Acoustical Society of America | AIP Publishing. Retrieved May 24, 2025, from https://pubs.aip.org/asa/jasa/article/152/2/1123/2838533/Source-separation-with-an-acoustic-vector-sensor
  289. Speakman, J. R., & Racey, P. A. (1991). No Cost of Echolocation for Bats in Flight. Nature, 350(6317), 421–423. https://doi.org/10.1038/350421a0
  290. Speakman, J. R., & Racey, P. A. (1991). No Cost of Echolocation for Bats in Flight. Nature, 350(6317), 421–423. https://doi.org/10.1038/350421a0
  291. Speakman, J. R., Bullock, D. J., Eales, L. A., & Racey, P. A. (1992). A Problem Defining Temporal Pattern in Animal Behaviour: Clustering in the Emergence Behaviour of Bats from Maternity Roosts. Animal Behaviour, 43(3), 491–500. https://doi.org/10.1016/S0003-3472(05)80107-1
  292. Spiesberger, J. L. (2001). Hyperbolic Location Errors Due to Insufficient Numbers of Receivers. The Journal of the Acoustical Society of America, 109(6), 3076–3079. https://doi.org/10.1121/1.1373442
  293. Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., Salles, A., Moss, C. F., & Madsen, P. T. (2019). A 2.6g Sound and Movement Tag for Studying the Acoustic Scene and Kinematics of Echolocating Bats. Methods in Ecology and Evolution, 10(1), 48–58. https://doi.org/10.1111/2041-210x.13108
  294. Stidsholt, L., Greif, S., Goerlitz, H. R., Beedholm, K., Macaulay, J., Johnson, M., & Madsen, P. T. (2021). Hunting Bats Adjust Their Echolocation to Receive Weak Prey Echoes for Clutter Reduction. Science Advances, 7(10), eabf1367. https://doi.org/10.1126/sciadv.abf1367
  295. Stidsholt, L., Johnson, M., Goerlitz, H. R., & Madsen, P. T. (2021). Wild Bats Briefly Decouple Sound Production from Wingbeats to Increase Sensory Flow during Prey Captures. IScience, 24(8), 102896. https://doi.org/10.1016/j.isci.2021.102896
  296. Stowell, D. (2022). Computational Bioacoustics with Deep Learning: A Review and Roadmap. PeerJ, 10, e13152. https://doi.org/10.7717/peerj.13152
  297. Strother, G. K., & Mogus, M. (1970). Acoustical Beam Patterns for Bats: Some Theoretical Considerations. The Journal of the Acoustical Society of America, 48(6B), 1430–1432. https://doi.org/10.1121/1.1912304
  298. Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic Scanning of Natural Scenes by Echolocation in the Big Brown Bat, Eptesicus Fuscus. Journal of Experimental Biology, 212(7), 1011–1020. https://doi.org/10.1242/jeb.024620
  299. Surlykke, A., Jakobsen, L., Brinkloev, S., & Moss, C. (2009). Bats Control the Auditory Scene by Adapting Intensity and Directionality of Echolocation Calls. The Journal of the Acoustical Society of America, 126, 2271–2271. https://doi.org/10.1121/1.3249296
  300. Surlykke, A., Nachtigall, P. E., Fay, R. R., & Popper, A. N. (Eds.). (2014). Biosonar (Vol. 51). Springer New York. https://doi.org/10.1007/978-1-4614-9146-0
  301. Surlykke, A., & Nachtigall, P. E. (2014). Biosonar of Bats and Toothed Whales: An Overview. In Biosonar (pp. 1–9).
  302. Surlykke, A., & Kalko, E. K. V. (2008). Echolocating Bats Cry Out Loud to Detect Their Prey. PLoS ONE, 3(4), e2036. https://doi.org/10.1371/journal.pone.0002036
  303. Surlykke, A., Boel Pedersen, S., & Jakobsen, L. (2008). Echolocating Bats Emit a Highly Directional Sonar Sound Beam in the Field. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 853–860. https://doi.org/10.1098/rspb.2008.1505
  304. Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating Bats Emit a Highly Directional Sonar Sound Beam in the Field. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 853–860. https://doi.org/10.1098/rspb.2008.1505
  305. Surlykke, A., Jakobsen, L., Kalko, E. K. V., & Page, R. A. (2013). Echolocation Intensity and Directionality of Perching and Flying Fringe-Lipped Bats, Trachops Cirrhosus (Phyllostomidae). Frontiers in Physiology, 4, 143. https://doi.org/10.3389/fphys.2013.00143
  306. Surlykke, A., Futtrup, V., & Tougaard, J. (2003). Prey-Capture Success Revealed by Echolocation Signals in Pipistrelle Bats (Pipistrellus Pygmaeus). Journal of Experimental Biology, 206(1), 93–104. https://doi.org/10.1242/jeb.00049
  307. Sutherland, L. C., Piercy, J. E., Bass, H. E., & Evans, L. B. (1974). Method for Calculating the Absorption of Sound by the Atmosphere. The Journal of the Acoustical Society of America, 56(S1), S1. https://doi.org/10.1121/1.1914056
  308. SUTHERS, R. O. D. E. R. I. C. K. A., THOMAS, S. T. E. V. E. N. P., & SUTHERS, B. A. R. B. A. R. A. J. (1972). Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat. Journal of Experimental Biology, 56, 37–48. https://jeb.biologists.org/content/56/1/37.short
  309. Takahashi, E., Hyomoto, K., Riquimaroux, H., Watanabe, Y., Ohta, T., & Hiryu, S. (2014). Adaptive Changes in Echolocation Sounds by Pipistrellus Abramus in Response to Artificial Jamming Sounds. The Journal of Experimental Biology, 217(Pt 16), 2885–2891. https://doi.org/10.1242/jeb.101139
  310. Tan, L., & Jiang, J. (2014). Digital Signal Processing - Fundamentals and Applications. https://www.sciencedirect.com/book/9780124158931/digital-signal-processing
  311. Taub, M., Goldshtein, A., Boonman, A., Eitan, O., Hurme, E., Greif, S., & Yovel, Y. (2023). What Determines the Information Update Rate in Echolocating Bats. Communications Biology, 6(1), 1–8. https://doi.org/10.1038/s42003-023-05563-x
  312. Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’brien, S. J., & Murphy, W. J. (2005). A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record. Science (New York, N.Y.), 307(5709), 580–584. https://doi.org/10.1126/science.1105113
  313. Tellechea, J. (2020). Echolocation Inter-Click Interval Variation among Specific Behaviours in Free-Ranging Bottlenose Dolphins from the Coast of Uruguay. J. Cetacean Res. Manage., 21(1), 141–149. https://doi.org/10.47536/jcrm.v21i1.192
  314. Teshima, Y., Yamada, Y., Tsuchiya, T., Heim, O., & Hiryu, S. (2022). Analysis of Echolocation Behavior of Bats in “Echo Space” Using Acoustic Simulation. BMC Biology, 20(1), 59. https://doi.org/10.1186/s12915-022-01253-y
  315. Teshima, Y., Nomura, T., Kato, M., Tsuchiya, T., Shimizu, G., & Hiryu, S. (2022). Effect of Bat Pinna on Sensing Using Acoustic Finite Difference Time Domain Simulation. The Journal of the Acoustical Society of America, 151(6), 4039–4045. https://doi.org/10.1121/10.0011737
  316. Teshima, Y., Genda, S., Aoki, Y., Fujisawa, M., Hiryu, S., & Fujii, K. (2025). Flight Trajectory Modeling Reveals Species-Specific Obstacle Avoidance Policies in Echolocating Bats (p. 2025.06.13.659477). https://doi.org/10.1101/2025.06.13.659477
  317. Teshima, Y., Hasegawa, Y., Tsuchiya, T., Moriyama, R., Genda, S., Kawamura, T., & Hiryu, S. (2022). Reconstruction of Echoes Reaching Bats in Flight from Arbitrary Targets by Acoustic Simulation. The Journal of the Acoustical Society of America, 151(3), 2127–2134. https://doi.org/10.1121/10.0009916
  318. Tolkova, I., & Klinck, H. (2022). Source Separation with an Acoustic Vector Sensor for Terrestrial Bioacoustics. The Journal of the Acoustical Society of America, 152(2), 1123–1134. https://doi.org/10.1121/10.0013505
  319. Tollin, D. J., & Yin, T. C. T. (2003). Spectral Cues Explain Illusory Elevation Effects With Stereo Sounds in Cats. Journal of Neurophysiology, 90(1), 525–530. https://doi.org/10.1152/jn.00107.2003
  320. Trappe, M., & Schnitzler, H.-U. (1982). Doppler-Shift Compensation in Insect-Catching Horseshoe Bats. Naturwissenschaften, 69(4), 193–194. https://doi.org/10.1007/BF00364902
  321. Tsuchiya, T., Teshima, Y., & Hiryu, S. (2022). Two-Dimensional Finite Difference-Time Domain Simulation of Moving Sound Source and Receiver. Acoustical Science and Technology, 43(1), 57–65. https://doi.org/10.1250/ast.43.57
  322. Tuninetti, A., Simmons, A. M., & Simmons, J. A. (2022). Amplitude Discrimination Is Predictably Affected by Echo Frequency Filtering in Wideband Echolocating Bats. The Journal of the Acoustical Society of America, 151(2), 982–991. https://doi.org/10.1121/10.0009486
  323. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition | IEEE Journals & Magazine | IEEE Xplore. Retrieved April 15, 2025, from https://ieeexplore.ieee.org/document/18626
  324. Übernickel, K., Tschapka, M., & Kalko, E. K. V. (2013). Flexible Echolocation Behavior of Trawling Bats during Approach of Continuous or Transient Prey Cues. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00096
  325. Umadi, R. Array WAH: Widefield Acoustics Heuristic for 3D Localisation of Bat Calls. https://github.com/raviumadi/Array_WAH.git
  326. Umadi, R., & Firzlaff, U. (2025). Biosonar Responsivity Sets the Stage for the Terminal Buzz (p. 2025.06.16.659925). https://doi.org/10.1101/2025.06.16.659925
  327. Umadi, R., Wiegrebe, L., Wisniewska, D. M., Peremans, H., & Firzlaff, U. (2025). Coordination Without Coupling: Flexible Sensorimotor Strategies in Phyllostomus Discolor. In Preparation.
  328. Umadi, R., Wiegrebe, L., Wisniewska, D. M., Jakobsen, L., & Firzlaff, U. (2025). Dynamic Beam Shaping in Phyllostomus Discolor Is Driven by Noseleaf Morphology. in preparation.
  329. Umadi, R., Dookia, S., & Rydell, J. (2019). The Monumental Mistake of Evicting Bats from Archaeological Sites—A Reflection from New Delhi. Heritage, 2(1), 553–567. https://doi.org/10.3390/heritage2010036
  330. Umadi, R. (2025). Oscillating Ears Dynamically Transform Echoes in Constant-Frequency Bats (p. 2025.06.14.659613). https://doi.org/10.1101/2025.06.14.659613
  331. Umadi, R. (2025). Temporal Precision Necessitates Wingbeat-Call Asynchrony in Actively Echolocating Bats (p. 2025.06.18.660328). https://doi.org/10.1101/2025.06.18.660328
  332. Umadi, R. (2025). Widefield Acoustics Heuristic: Advancing Microphone Array Design for Accurate Spatial Tracking of Echolocating Bats (p. 2025.06.03.657701). https://doi.org/10.1101/2025.06.03.657701
  333. Usui, K., Khannoon, E. R., & Tokita, M. (2022). Facial Muscle Modification Associated with Chiropteran Noseleaf Development: Insights into the Developmental Basis of a Movable Rostral Appendage in Mammals. Developmental Dynamics, 251(8), 1368–1379. https://doi.org/10.1002/dvdy.472
  334. Usui, K., & Tokita, M. (2019). Normal Embryonic Development of the Greater Horseshoe Bat \mkbibemphRhinolophus\mkbibemph Ferrumequinum , with Special Reference to Nose Leaf Formation. Journal of Morphology, 280(9), 1309–1322. https://doi.org/10.1002/jmor.21032
  335. Vanderelst, D., & Peremans, H. (2025). How Swarming Bats Can Use the Collective Soundscape for Obstacle Avoidance. PLOS Computational Biology, 21(5), e1013013. https://doi.org/10.1371/journal.pcbi.1013013
  336. Vanderelst, D., & Peremans, H. (2018). Modeling Bat Prey Capture in Echolocating Bats: The Feasibility of Reactive Pursuit. Journal of Theoretical Biology, 456, 305–314. https://doi.org/10.1016/j.jtbi.2018.07.027
  337. Vanderelst, D., Mey, F. D., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What Noseleaves Do for FM Bats Depends on Their Degree of Sensorial Specialization. PLoS ONE, 5(8), e11893. https://doi.org/10.1371/journal.pone.0011893
  338. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
  339. Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., Brain, K. L., Faure, P. A., & Fenton, M. B. (2010). A Bony Connection Signals Laryngeal Echolocation in Bats. Nature, 463(7283), 939–942. https://doi.org/10.1038/nature08737
  340. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters, 75(6), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226
  341. Voigt, C. C., & Lewanzik, D. (2012). ’No Cost of Echolocation for Flying Bats’ Revisited. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 182(6), 831–840. https://doi.org/10.1007/s00360-012-0663-x
  342. Wajid, M., Kumar, A., & Bahl, R. (2016). Design and Analysis of Air Acoustic Vector-Sensor Configurations for Two-Dimensional Geometry. The Journal of the Acoustical Society of America, 139(5), 2815–2832. https://doi.org/10.1121/1.4948566
  343. Walker, V. A., Peremans, H., & Hallam, J. C. (1998). One Tone, Two Ears, Three Dimensions: A Robotic Investigation of Pinnae Movements Used by Rhinolophid and Hipposiderid Bats. The Journal of the Acoustical Society of America, 104(1), 569–579. https://doi.org/10.1121/1.423256
  344. Wallot, S. (2017). Recurrence Quantification Analysis of Processes and Products of Discourse: A Tutorial in R. Discourse Processes, 54(5–6), 382–405. https://doi.org/10.1080/0163853X.2017.1297921
  345. Wang, X., & Müller, R. (2009). Pinna-Rim Skin Folds Narrow the Sonar Beam in the Lesser False Vampire Bat ( \mkbibemphMegaderma\mkbibemph Spasma ). The Journal of the Acoustical Society of America, 126(6), 3311–3318. https://doi.org/10.1121/1.3257210
  346. Waters, D. A. (2007). Echolocation in Air: Biological Systems, Technical Challenges, and Transducer Design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(10), 1165–1175. https://doi.org/10.1243/09544062JMES504
  347. Weinberg, S. (1989). The Cosmological Constant Problem. Reviews of Modern Physics, 61(1), 1–23. https://doi.org/10.1103/RevModPhys.61.1
  348. Wersényi, G. (2010). Representations of HRTFs Using MATLAB: 2D and 3D Plots of Accurate Dummy-Head Measurements.
  349. Wichmann, F. A., & Jäkel, F. (2018). Methods in Psychophysics. In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (pp. 1–42). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119170174.epcn507
  350. Wiegrebe, L. (2008). An Autocorrelation Model of Bat Sonar. Biological Cybernetics, 98(6), 587–595. https://doi.org/10.1007/s00422-008-0216-2
  351. Wiegrebe, L., & Schmidt, S. (1996). Temporal Integration in the Echolocating Bat, \mkbibemphMegaderma\mkbibemph Lyra. Hearing Research, 102(1), 35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
  352. Wiegrebe, L., & Schmidt, S. (1996). Temporal Integration in the Echolocating Bat, \mkbibemphMegaderma\mkbibemph Lyra. Hearing Research, 102(1), 35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
  353. Wiegrebe, L., & Schmidt, S. (1996). Temporal Integration in the Echolocating Bat, Megaderma Lyra. Hearing Research, 102(1–2), 35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
  354. Wigner, E. THE UNREASONABLE EFFECTIVENSS OF MATHEMATICS IN THE NATURAL SCIENCES.
  355. Wilkinson, G. S. (2013). 12. Social and Vocal Complexity in Bats. In Animal Social Complexity (pp. 322–341). Harvard University Press. https://www.degruyterbrill.com/document/doi/10.4159/harvard.9780674419131.c24/html
  356. Willig, M. R., Camilo, G. R., & Noble, S. J. (1993). Dietary Overlap in Frugivorous and Insectivorous Bats from Edaphic Cerrado Habitats of Brazil. Journal of Mammalogy, 74(1), 117–128. https://doi.org/10.2307/1381910
  357. Wilson, D. E., & Mittermier. Handbook of the Mammals of the World (Vol. 9). Lynx Nature Books. Retrieved May 13, 2025, from https://lynxnaturebooks.com/product/handbook-of-the-mammals-of-the-world-volume-9/
  358. Wilson, A. M., Lowe, J. C., Roskilly, K., Hudson, P. E., Golabek, K. A., & McNutt, J. W. (2013). Locomotion Dynamics of Hunting in Wild Cheetahs. Nature, 498(7453), 185–189. https://doi.org/10.1038/nature12295
  359. Wisniewska, D. M. Wisniewska et al 2012. Retrieved April 12, 2025, from https://www.academia.edu/6291486/Wisniewska_et_al_2012
  360. Wittrock, U. (2010). Laryngeally Echolocating Bats. Nature, 466(7309), E6–E6. https://doi.org/10.1038/nature09156
  361. Wohlgemuth, M., & Moss, C. (2013). Active Listening in a Complex Environment. Proceedings of Meetings on Acoustics, 19(1), 010030. https://doi.org/10.1121/1.4800959
  362. Wohlgemuth, M. J., Luo, J., & Moss, C. F. (2016). Three-Dimensional Auditory Localization in the Echolocating Bat. Current Opinion in Neurobiology, 41, 78–86. https://doi.org/10.1016/j.conb.2016.08.002
  363. Wong, J. G., & Waters, D. A. (2001). The Synchronisation of Signal Emission with Wingbeat During the Approach Phase in Soprano Pipistrelles ( \mkbibemphPipistrellus Pygmaeus ). Journal of Experimental Biology, 204(3), 575–583. https://doi.org/10.1242/jeb.204.3.575
  364. Wotton, J. M., & Simmons, J. A. (2000). Spectral Cues and Perception of the Vertical Position of Targets by the Big Brown Bat, \mkbibemphEptesicus\mkbibemph Fuscus. The Journal of the Acoustical Society of America, 107(2), 1034–1041. https://doi.org/10.1121/1.428283
  365. Xia, H., Ma, N., Li, A., & Luo, J. (2025). Call Production and Wingbeat Coupling Is Flexible and Species-Specific in Echolocating Bats. Annals of the New York Academy of Sciences, 1547(1), 105–115. https://doi.org/10.1111/nyas.15325
  366. Xu, Y., Liu, Z., Tian, Y., Tong, S., Tegmark, M., & Jaakkola, T. (2023). PFGM++: Unlocking the Potential of Physics-Inspired Generative Models. https://doi.org/10.48550/arXiv.2302.04265
  367. Yamada, Y., Mibe, Y., Yamamoto, Y., Ito, K., Heim, O., & Hiryu, S. (2020). Modulation of Acoustic Navigation Behaviour by Spatial Learning in the Echolocating Bat Rhinolophus Ferrumequinum Nippon. Scientific Reports, 10(1), 10751. https://doi.org/10.1038/s41598-020-67470-z
  368. Yang, Y., & Perdikaris, P. (2018). Physics-Informed Deep Generative Models. https://doi.org/10.48550/arXiv.1812.03511
  369. Yang, Y.-H., Liu, J.-G., & Song, S.-M. (2024). A Recursive Non-Uniform Sampling Estimator for Asynchronous Nonlinear Systems. Sensors, 24(9), 2882. https://doi.org/10.3390/s24092882
  370. Ye, H., & Luo, J. (2022). Perceptual Hearing Sensitivity during Vocal Production. IScience, 25(11), 105435. https://doi.org/10.1016/j.isci.2022.105435
  371. Yi, X., Kontopoulos, D.-G., & Hiller, M. (2025). Comprehensive Phylogenetic Reconstructions Support Ancestral Omnivory in the Ecologically Diverse Bat Family Phyllostomidae (p. 2025.02.04.636560). https://doi.org/10.1101/2025.02.04.636560
  372. Yin, X., & Müller, R. (2019). Fast-Moving Bat Ears Create Informative Doppler Shifts. Proceedings of the National Academy of Sciences, 116(25), 12270–12274. https://doi.org/10.1073/pnas.1901120116
  373. Yoh, N., Syme, P., Rocha, R., Meyer, C. F. J., & López-Baucells, A. (2020). Echolocation of Central Amazonian ‘Whispering’ Phyllostomid Bats: Call Design and Interspecific Variation. Mammal Research, 65(3), 583–597. https://doi.org/10.1007/s13364-020-00503-0
  374. Yoshida, S., Hase, K., Heim, O., Kobayasi, K. I., & Hiryu, S. (2024). Doppler Detection Triggers Instantaneous Escape Behavior in Scanning Bats. IScience, 109222. https://doi.org/10.1016/j.isci.2024.109222
  375. Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal Localization by Pointing Off Axis. Science, 327(5966), 701–704. https://doi.org/10.1126/science.1183310
  376. Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2009). Visuo-Motor Coordination and Internal Models for Object Interception. Experimental Brain Research, 192(4), 571–604. https://doi.org/10.1007/s00221-008-1691-3
  377. Zhang, S., Liu, Y., Tang, J., Ying, L., & Müller, R. (2019). Dynamic Relationship between Noseleaf and Pinnae in Echolocating Hipposiderid Bats. The Journal of Experimental Biology, 222(Pt 18), jeb210252. https://doi.org/10.1242/jeb.210252
  378. Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334. https://doi.org/10.1109/34.888718
  379. Zhuang, Q., & Müller, R. (2007). Numerical Study of the Effect of the Noseleaf on Biosonar Beamforming in a Horseshoe Bat. Physical Review E, 76(5), 051902. https://doi.org/10.1103/physreve.76.051902
  380. Zhu, H., Gupta, A. K., Wu, X., Goldsworthy, M., Wang, R., Mikkilineni, M., & Müller, R. (2023). A Validation Study for a Bat-Inspired Sonar Sensing Simulator. PLOS ONE, 18(1), e0280631. https://doi.org/10.1371/journal.pone.0280631