Bibliography
This is a copy of my Zotero bibliography collection. It is automatically updated as I add new entries to my collection.
- 1974SvA....18...17Z Page 17. Retrieved May 18, 2025, from https://adsabs.harvard.edu/full/1974SvA....18...17Z
- Acharya, L., & Fenton, M. B. (1992). Echolocation Behaviour of Vespertilionid Bats (Lasiurus Cinereus and Lasiurus Borealis) Attacking Airborne Targets Including Arctiid Moths. Canadian Journal of Zoology, 70(7), 1292–1298. https://doi.org/10.1139/z92-180
- Acoustics — Attenuation of Sound during Propagation Outdoors — Part 1: Calculation of the Absorption of Sound by the Atmosphere. (1993). International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:9613:-1:ed-1:v1:en
- Adams, R. A., & Pedersen, S. C. (2013). Bat Evolution, Ecology, and Conservation.
- Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., … Zonca, A. (2020). Planck 2018 Results - VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
- Altes, R. A. (1998). Echo Phase Perception in Bat Sonar? The Journal of the Acoustical Society of America, 69(2), 505. https://doi.org/10.1121/1.385479
- Amichai, E., Blumrosen, G., & Yovel, Y. (2015). Calling Louder and Longer: How Bats Use Biosonar under Severe Acoustic Interference from Other Bats. Proceedings. Biological Sciences, 282(1821), 20152064. https://doi.org/10.1098/rspb.2015.2064
- Amichai, E., & Yovel, Y. (2021). Echolocating Bats Rely on an Innate Speed-of-Sound Reference. Proceedings of the National Academy of Sciences, 118(19), e2024352118. https://doi.org/10.1073/pnas.2024352118
- Arai, S., Iwatani, Y., & Hashimoto, K. (2011). A Condition for Better Estimation Using Asynchronous Sampling than Synchronous Sampling. SICE Journal of Control, Measurement, and System Integration, 4(3), 249–253. https://doi.org/10.9746/jcmsi.4.249
- Arbour, J. H., Curtis, A. A., & Santana, S. E. (2019). Signatures of Echolocation and Dietary Ecology in the Adaptive Evolution of Skull Shape in Bats. Nature Communications, 10(1), 2036. https://doi.org/10.1038/s41467-019-09951-y
- Arita, H. T. (1990). Noseleaf Morphology and Ecological Correlates in Phyllostomid Bats. Journal of Mammalogy, 71(1), 36–47. https://doi.org/10.2307/1381314
- Arita, H. T. (1990). Noseleaf Morphology and Ecological Correlates in Phyllostomid Bats. Journal of Mammalogy, 71(1), 36–47.
- Baier, A. L., Wiegrebe, L., & Goerlitz, H. R. (2019). Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. IScience, 14, 335–344. https://doi.org/10.1016/j.isci.2019.03.029
- Baier, A. L., Stelzer, K.-J., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part II: Amplitude Modulation. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 204(11), 941–951. https://doi.org/10.1007/s00359-018-1292-y
- Baier, A. L., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part I: Delay Modulation. Journal of Comparative Physiology A, 204(11), 929–939. https://doi.org/10.1007/s00359-018-1291-z
- Balakrishnan, S., Gao, L., He, W., & Müller, R. (2010). A Digital Model for the Deformation of Bat Ears. The Journal of the Acoustical Society of America, 127, 1862–1862. https://doi.org/10.1121/1.3384444
- Baldwin, M. Peer Review. In Encyclopedia Of The History Of Science. https://ethos.lps.library.cmu.edu/article/id/19/
- Barber, J. R., Plotkin, D., Rubin, J. J., Homziak, N. T., Leavell, B. C., Houlihan, P. R., Miner, K. A., Breinholt, J. W., Quirk-Royal, B., Padrón, P. S., Nunez, M., & Kawahara, A. Y. (2022). Anti-Bat Ultrasound Production in Moths Is Globally and Phylogenetically Widespread. Proceedings of the National Academy of Sciences, 119(25), e2117485119. https://doi.org/10.1073/pnas.2117485119
- Barchi, J. R., Knowles, J. M., & Simmons, J. A. (2013). Spatial Memory and Stereotypy of Flight Paths by Big Brown Bats in Cluttered Surroundings. Journal of Experimental Biology, 216(6), 1053–1063. https://doi.org/10.1242/jeb.073197
- Barrameda, E. M., Das, S., & Santoro, N. (2008). Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal Environments. In S. P. Fekete (Ed.), Algorithmic Aspects of Wireless Sensor Networks (pp. 125–140). Springer. https://doi.org/10.1007/978-3-540-92862-1_11
- Bass, H. E., Sutherland, L. C., Zuckerwar, A. J., Blackstock, D. T., & Hester, D. M. (1995). Atmospheric Absorption of Sound: Further Developments. The Journal of the Acoustical Society of America, 97(1), 680–683. https://doi.org/10.1121/1.412989
- Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats Use Echo Harmonic Structure to Distinguish Their Targets from Background Clutter. Science, 333(6042), 627–630. https://doi.org/10.1126/science.1202065
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using \textbfLme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
- Beetz, M. J., Kössl, M., & Hechavarría, J. C. (2019). Dynamic Adaptations in the Echolocation Behavior of Bats in Response to Acoustic Interference. BioRxiv, 604603. https://doi.org/10.1101/604603
- Beleyur, T., & Goerlitz, H. R. (2019). Modeling Active Sensing Reveals Echo Detection Even in Large Groups of Bats. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26662–26668. https://doi.org/10.1073/pnas.1821722116
- Bell, G. P., & Fenton, M. B. (1984). The Use of Doppler-shifted Echoes as a Flutter Detection and Clutter Rejection System: The Echolocation and Feeding Behavior of Hipposideros Tuber (Chiroptera :Hipposideridae). Behav Ecol Sociobiol, 15, 109–114.
- Beranek, L. L., & Mellow, T. J. (2012). Acoustics: Sound Fields and Transducers. https://www.sciencedirect.com/book/9780123914217/acoustics-sound-fields-and-transducers
- Berkhout, A. J., & Zaanen, P. R. (1976). A Comparison Between Wiener Filtering, Kalman Filtering, and Deterministic Least Squares Estimation. Geophysical Prospecting, 24(1), 141–197. https://doi.org/10.1111/j.1365-2478.1976.tb00390.x
- Blackstock, S., Stevenson, R., Vanderelst, D., Haberman, M., Domski, P., & Kloepper, L. (2023). Sensing in the Swarm: Spectro-temporal Variation May Facilitate Self-Recognition of Echoes for Bats Flying in Dense Groups. The Journal of the Acoustical Society of America, 154(4_supplement), A48. https://doi.org/10.1121/10.0022758
- Bohn, K. M., Smarsh, G. C., & Smotherman, M. (2013). Social Context Evokes Rapid Changes in Bat Song Syntax. Animal Behaviour, 85(6), 1485–1491. https://doi.org/10.1016/j.anbehav.2013.04.002
- Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating Fruit Bats Produce Biosonar Clicks with Their Wings. Current Biology, 24(24), 2962–2967. https://doi.org/10.1016/j.cub.2014.10.077
- Bradbury, J. W., & Vehrencamp, S. L. (1976). Social Organization and Foraging in Emballonurid Bats. Behavioral Ecology and Sociobiology, 1(4), 337–381. https://doi.org/10.1007/BF00299399
- Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation Call Intensity and Directionality in Flying Short-Tailed Fruit Bats, Carollia Perspicillata (Phyllostomidae). The Journal of the Acoustical Society of America, 129(1), 427. https://doi.org/10.1121/1.3519396
- Britton, A. R. C., & Jones, G. (1999). Echolocation Behaviour and Prey-Capture Success in Foraging Bats: Laboratory and Field Experiments on Myotis Daubentonii. Journal of Experimental Biology, 202(13), 1793–1801. https://doi.org/10.1242/jeb.202.13.1793
- Camera Calibration. [Mathworks Documentation]. Camera Calibration. https://de.mathworks.com/help/vision/camera-calibration.html
- Carlile, S., Martin, R., & McAnally, K. (2005). Spectral Information in Sound Localization. In International Review of Neurobiology (Vol. 70, pp. 399–434). Elsevier. https://doi.org/10.1016/S0074-7742(05)70012-X
- Carmena, J. M. (2001). Towards a Bionic Bat: A Biomimetic Investigation of Active Sensing, Doppler-shift Estimation, and Ear Morphology Design for Mobile Robots. https://era.ed.ac.uk/handle/1842/325
- Carroll, S. M. (2001). The Cosmological Constant. Living Reviews in Relativity, 4(1), 1. https://doi.org/10.12942/lrr-2001-1
- Chamberlin, T. C. (1890). The Method of Multiple Working Hypotheses. Science, ns-15(366), 92–96. https://doi.org/10.1126/science.ns-15.366.92
- Chaverri, G., Ancillotto, L., & Russo, D. (2018). Social Communication in Bats. Biological Reviews of the Cambridge Philosophical Society, 93(4), 1938–1954. https://doi.org/10.1111/brv.12427
- Chen, Y., Liu, Q., Su, Q., Sun, Y., Peng, X., He, X., & Zhang, L. (2016). ’Compromise’ in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros Larvatus). PloS One, 11(3), e0151382. https://doi.org/10.1371/journal.pone.0151382
- Chiu, C., & Moss, C. F. (2007). The Role of the External Ear in Vertical Sound Localization in the Free Flying Bat, \mkbibemphEptesicus\mkbibemph Fuscus. The Journal of the Acoustical Society of America, 121(4), 2227–2235. https://doi.org/10.1121/1.2434760
- Chiu, C., & Moss, C. F. (2007). The Role of the External Ear in Vertical Sound Localization in the Free Flying Bat, Eptesicus Fuscus. The Journal of the Acoustical Society of America, 121(4), 2227–2235. https://doi.org/10.1121/1.2434760
- Christodoulou, D. (1991). Nonlinear Nature of Gravitation and Gravitational-Wave Experiments. Physical Review Letters, 67(12), 1486–1489. https://doi.org/10.1103/PhysRevLett.67.1486
- Cook, R. J., & Lawless, J. F. (2007). The Statistical Analysis of Recurrent Events. Springer.
- Corcoran, A., & Conner, W. (2014). Bats Jamming Bats: Food Competition through Sonar Interference. Science, 346(6210), 745–747. https://doi.org/10.1126/science.1259512
- Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective Leadership and Decision-Making in Animal Groups on the Move. Nature, 433(7025), 513–516. https://doi.org/10.1038/nature03236
- Covey, E., & Casseday, J. H. (1999). Timing in the Auditory System of the Bat. Annual Review of Physiology, 61, 457–476. https://doi.org/10.1146/annurev.physiol.61.1.457
- Covey, E., & Casseday, J. H. (1999). Timing in the Auditory System of the Bat. Annual Review of Physiology, 61, 457–476. https://doi.org/10.1146/annurev.physiol.61.1.457
- Covey, E., & Casseday, J. H. (1999). TIMING IN THE AUDITORY SYSTEM OF THE BAT. Annual Review of Physiology, 61(1), 457–476. https://doi.org/10.1146/annurev.physiol.61.1.457
- Cox, D. R., & Isham, V. (2018). Point Processes. Routledge. https://doi.org/10.1201/9780203743034
- Danilovich, S., Krishnan, A., Lee, W.-J., Borrisov, I., Eitan, O., Kosa, G., Moss, C. F., & Yovel, Y. (2015). Bats Regulate Biosonar Based on the Availability of Visual Information. Current Biology, 25(23), R1124–R1125. https://doi.org/10.1016/j.cub.2015.11.003
- Danilovich, S., Shalev, G., Boonman, A., Goldshtein, A., & Yovel, Y. (2020). Echolocating Bats Detect but Misperceive a Multidimensional Incongruent Acoustic Stimulus. Proceedings of the National Academy of Sciences, 117(45), 28475–28484. https://doi.org/10.1073/pnas.2005009117
- de Framond, L., Beleyur, T., Lewanzik, D., & Goerlitz, H. R. (2023). Calibrated Microphone Array Recordings Reveal That a Gleaning Bat Emits Low-Intensity Echolocation Calls Even in Open-Space Habitat. Journal of Experimental Biology, 226(18), jeb245801. https://doi.org/10.1242/jeb.245801
- De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat \mkbibemphPhyllostomus\mkbibemph Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
- De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
- Denzinger, A., Tschapka, M., & Schnitzler, H.-U. (2018). The Role of Echolocation Strategies for Niche Differentiation in Bats. Canadian Journal of Zoology, 96(3), 171–181. https://doi.org/10.1139/cjz-2017-0161
- Dey, P., & Balakrishnan, R. (2024). A Trait-Based Understanding of the Vulnerability of a Paleotropical Moth Community to Predation by a Sympatric Bat with Flexible Foraging Strategies. Ecological Entomology, 49(5), 635–646. https://doi.org/10.1111/een.13335
- Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). ’Where’ and ’what’ in the Whisker Sensorimotor System. Nature Reviews. Neuroscience, 9(8), 601–612. https://doi.org/10.1038/nrn2411
- Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). ’Where’ and ’what’ in the Whisker Sensorimotor System. Nature Reviews. Neuroscience, 9(8), 601–612. https://doi.org/10.1038/nrn2411
- Ding, J., Zhang, Y., Han, F., Jiang, T., Feng, J., Lin, A., & Liu, Y. (2022). Adaptive Temporal Patterns of Echolocation and Flight Behaviors Used to Fly through Varied-Sized Windows by 2 Species of High Duty Cycle Bats. Current Zoology, 69(1), 32–40. https://doi.org/10.1093/cz/zoac018
- Ding, J., Han, F., Zhang, K., Lin, A., Jiang, T., Feng, J., & Liu, Y. (2023). Performance of Doppler Shift Compensation Varies with Environmental Temperature and Humidity in Bats. Animal Behaviour, 205, 35–46. https://doi.org/10.1016/j.anbehav.2023.08.009
- Dixon, M. M., Carter, G. G., Ryan, M. J., & Page, R. A. (2023). Spatial Learning Overshadows Learning Novel Odors and Sounds in Both Predatory and Frugivorous Bats. Behavioral Ecology, 34(3), 325–333. https://doi.org/10.1093/beheco/arad001
- Eick, G. N., Jacobs, D. S., & Matthee, C. A. (2005). A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera). Molecular Biology and Evolution, 22(9), 1869–1886. https://doi.org/10.1093/molbev/msi180
- Eitan, O., Taub, M., Boonman, A., Zviran, A., Tourbabin, V., Weiss, A. J., & Yovel, Y. (2022). Echolocating Bats Rapidly Adjust Their Mouth Gape to Control Spatial Acquisition When Scanning a Target. BMC Biology, 20(1), 282. https://doi.org/10.1186/s12915-022-01487-w
- Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast Muscles Set Maximum Call Rate in Echolocating Bats. Science, 333(6051), 1885–1888. https://doi.org/10.1126/science.1207309
- Elliott, L. P., & Brook, B. W. (2007). Revisiting Chamberlin: Multiple Working Hypotheses for the 21st Century. BioScience, 57(7), 608–614. https://doi.org/10.1641/B570708
- Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, (KDD-96).
- Estimate Geometric Parameters of a Stereo Camera - MATLAB. Retrieved March 5, 2024, from https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html
- Fabian, S. T., Sumner, M. E., Wardill, T. J., Rossoni, S., & Gonzalez-Bellido, P. T. (2018). Interception by Two Predatory Fly Species Is Explained by a Proportional Navigation Feedback Controller. Journal of the Royal Society Interface, 15(147), 20180466. https://doi.org/10.1098/rsif.2018.0466
- Favata, M. (2010). The Gravitational-Wave Memory Effect. Classical and Quantum Gravity, 27(8), 084036. https://doi.org/10.1088/0264-9381/27/8/084036
- Feng, L., Gao, L., Lu, H., & Müller, R. (2012). Noseleaf Dynamics during Pulse Emission in Horseshoe Bats. PLoS ONE, 7(5), e34685. https://doi.org/10.1371/journal.pone.0034685
- Fengzhen, Z., Guijuan, L., Zhaohui, Z., & Chen, H. (2018). Doppler Shift Extraction of Wideband Signal Using Spectrum Scaling Matching. MATEC Web of Conferences, 208, 01001. https://doi.org/10.1051/matecconf/201820801001
- Fenton, B., Grinnell, A. D., Popper, A. N., & Fay, R. R. (2016). Bat Bioacoustics. Springer Link. https://link.springer.com/book/10.1007/978-1-4939-3527-7
- Fenton, M. B. (2010). Convergences in the Diversification of Bats. Current Zoology, 56(4), 454–468. https://doi.org/10.1093/czoolo/56.4.454
- Fenton, M. B. (2022). Ear Anatomy Traces a Family Tree for Bats. Nature, 602, 387–388.
- Fenton, M. B., Faure, P. A., & Ratcliffe, J. M. (2012). Evolution of High Duty Cycle Echolocation in Bats. Journal of Experimental Biology, 215(17), 2935–2944. https://doi.org/10.1242/jeb.073171
- Finger, N. M., Holderied, M., & Jacobs, D. S. (2022). Detection Distances in Desert Dwelling, High Duty Cycle Echolocators: A Test of the Foraging Habitat Hypothesis. PloS One, 17(5), e0268138. https://doi.org/10.1371/journal.pone.0268138
- Firzlaff, U., & Schuller, G. (2003). Spectral Directionality of the External Ear of the Lesser Spear-Nosed Bat, Phyllostomus Discolor. Hearing Research, 185(1–2), 110–122. https://doi.org/10.1016/s0378-5955(03)00281-8
- Fletcher, N. H., & Thwaites, S. Obliquely Truncated Simple Horns: Idealized Models for Vertebrate Pinnae.
- Forli, A., & Yartsev, M. M. (2023). Hippocampal Representation during Collective Spatial Behaviour in Bats. Nature, 621(7980), 796–803. https://doi.org/10.1038/s41586-023-06478-7
- Friedlander, B., & Porat, B. (1984). The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-20(2), 158–173. https://doi.org/10.1109/TAES.1984.310437
- Fry, R. N., Tuninetti, A., Simmons, J. A., & Simmons, A. M. (2024). Manipulating Environmental Clutter Reveals Dynamic Active Sensing Strategies in Big Brown Bats. Animal Behavior and Cognition, 11(1), 61–78. https://doi.org/10.26451/abc.11.01.04.2024
- Fujioka, E., Aihara, I., Sumiya, M., Aihara, K., & Hiryu, S. (2016). Echolocating Bats Use Future-Target Information for Optimal Foraging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 4848–4852. https://doi.org/10.1073/pnas.1515091113
- Fuzessery, Z. M. (1996). Monaural and Binaural Spectral Cues Created by the External Ears of the Pallid Bat. Hearing Research, 95(1–2), 1–17. https://doi.org/10.1016/0378-5955(95)00223-5
- Gao, L., Balakrishnan, S., He, W., Yan, Z., & Müller, R. (2011). Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns. Physical Review Letters, 107(21), 214301. https://doi.org/10.1103/physrevlett.107.214301
- Geberl, C., Brinkløv, S., Wiegrebe, L., & Surlykke, A. (2015). Fast Sensory–Motor Reactions in Echolocating Bats to Sudden Changes during the Final Buzz and Prey Intercept. Proceedings of the National Academy of Sciences, 112(13), 4122–4127. https://doi.org/10.1073/pnas.1424457112
- Geipel, I., Steckel, J., Tschapka, M., Vanderelst, D., Schnitzler, H.-U., Kalko, E. K. V., Peremans, H., & Simon, R. (2019). Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Current Biology, 29(16), 2731–2736.e3. https://doi.org/10.1016/j.cub.2019.06.076
- Genzel, D., Geberl, C., Dera, T., & Wiegrebe, L. (2012). Coordination of Bat Sonar Activity and Flight for the Exploration of Three-Dimensional Objects. Journal of Experimental Biology, 215(13), 2226–2235. https://doi.org/10.1242/jeb.064535
- Genzel, D., & Wiegrebe, L. (2008). Time-Variant Spectral Peak and Notch Detection in Echolocation-Call Sequences in Bats. Journal of Experimental Biology, 211(1), 9–14. https://doi.org/10.1242/jeb.012823
- Geoffroy, P. (2004). A Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project. IRCAM.
- Geronazzo, M., Spagnol, S., & Avanzini, F. (2010). ESTIMATION AND MODELING OF PINNA-RELATED TRANSFER FUNCTIONS.
- Gessinger, G. (2025). On the Sensory Ecology of Phyllostomid Bats [Universität Ulm]. https://oparu.uni-ulm.de/items/ef1574a8-3fff-4127-acb1-3fd64fd6c861
- Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial Cognition in Bats and Rats: From Sensory Acquisition to Multiscale Maps and Navigation. Nature Reviews Neuroscience, 16(2), 94–108. https://doi.org/10.1038/nrn3888
- Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., & Moss, C. F. (2006). Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey. PLOS Biology, 4(5), e108. https://doi.org/10.1371/journal.pbio.0040108
- Ghose, K., & Moss, C. F. (2003). The Sonar Beam Pattern of a Flying Bat as It Tracks Tethered Insects. The Journal of the Acoustical Society of America, 114(2), 1120–1131. https://doi.org/10.1121/1.1589754
- Goerlitz, H. R., Geberl, C., & Wiegrebe, L. (2010). Sonar Detection of Jittering Real Targets in a Free-Flying Bat. The Journal of the Acoustical Society of America, 128(3), 1467–1475. https://doi.org/10.1121/1.3445784
- Goldshtein, A., Mazar, O., Harten, L., Amichai, E., Assa, R., Levi, A., Orchan, Y., Toledo, S., Nathan, R., & Yovel, Y. (2025). Onboard Recordings Reveal How Bats Maneuver under Severe Acoustic Interference. Proceedings of the National Academy of Sciences, 122(14), e2407810122. https://doi.org/10.1073/pnas.2407810122
- Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). DeepPoseKit, a Software Toolkit for Fast and Robust Animal Pose Estimation Using Deep Learning. ELife, 8, e47994. https://doi.org/10.7554/elife.47994
- Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The Echolocation of Flying Insects by Bats. Animal Behaviour, 8(3), 141–154. https://doi.org/10.1016/0003-3472(60)90022-1
- Griffin, D. R., & Thompson, D. (1982). High Altitude Echolocation of Insects by Bats. Behavioral Ecology and Sociobiology, 10(4), 303–306. https://doi.org/10.1007/BF00302821
- Griffin, D. R., & Thompson, D. (1982). High Altitude Echolocation of Insects by Bats. Behavioral Ecology and Sociobiology, 10(4), 303–306. https://doi.org/10.1007/BF00302821
- Griffin, D. R. (1944). How Bats Guide Their Flight by Supersonic Echoes. American Journal of Physics, 12(6), 342–345. https://doi.org/10.1119/1.1990634
- Griffin, D. R. (1958). Listening in the Dark: The Acoustic Orientation of Bats and Men (pp. xviii, 413). Yale Univer. Press.
- Griffin, D. R. (2001). Return to the Magic Well: Echolocation Behavior of Bats and Responses of Insect Prey. BioScience, 51(7), 555–556. https://doi.org/10.1641/0006-3568(2001)051[0555:RTTMWE]2.0.CO;2
- Griffin, D. R., & Galambos, R. (1941). The Sensory Basis of Obstacle Avoidance by Flying Bats. Journal of Experimental Zoology, 86(3), 481–506. https://doi.org/10.1002/jez.1400860310
- Grinstein, E., Tengan, E., Çakmak, B., Dietzen, T., Nunes, L., van Waterschoot, T., Brookes, M., & Naylor, P. A. (2024). Steered Response Power for Sound Source Localization: A Tutorial Review. EURASIP Journal on Audio, Speech, and Music Processing, 2024(1), 59. https://doi.org/10.1186/s13636-024-00377-z
- Gulia, P., & Gupta, A. (2017). Mathematics and Acoustics. In Mathematics Applied to Engineering (pp. 55–82). Elsevier. https://doi.org/10.1016/B978-0-12-810998-4.00003-X
- Gunnell, G. F., & Simmons, N. B. (2005). Fossil Evidence and the Origin of Bats. Journal of Mammalian Evolution, 12(1), 209–246. https://doi.org/10.1007/s10914-005-6945-2
- Guo, D., Ding, J., Liu, H., Zhou, L., Feng, J., Luo, B., & Liu, Y. (2021). Social Calls Influence the Foraging Behavior in Wild Big-Footed Myotis. Frontiers in Zoology, 18(1), 3. https://doi.org/10.1186/s12983-020-00384-8
- Gwilliams, L., & King, J.-R. (2020). Recurrent Processes Support a Cascade of Hierarchical Decisions. ELife, 9. https://doi.org/10.7554/eLife.56603
- Hand, S. J., Maugoust, J., Beck, R. M. D., & Orliac, M. J. (2023). A 50-Million-Year-Old, Three-Dimensionally Preserved Bat Skull Supports an Early Origin for Modern Echolocation. Current Biology. https://doi.org/10.1016/j.cub.2023.09.043
- Hartley, D. J., & Suthers, R. A. (1988). The Acoustics of the Vocal Tract in the Horseshoe Bat, Rhinolophus Hildebrandti. The Journal of the Acoustical Society of America, 84(4), 1201–1213. https://doi.org/10.1121/1.396621
- Hartley, D. J., & Suthers, R. A. (1987). The Sound Emission Pattern and the Acoustical Role of the Noseleaf in the Echolocating Bat, Carollia Perspicillata. The Journal of the Acoustical Society of America, 82(6), 1892–1900. https://doi.org/10.1121/1.395684
- Hase, K., Kadoya, Y., Maitani, Y., Miyamoto, T., Kobayasi, K. I., & Hiryu, S. (2018). Bats Enhance Their Call Identities to Solve the Cocktail Party Problem. Communications Biology, 1, 39. https://doi.org/10.1038/s42003-018-0045-3
- Hase, K., Miyamoto, T., Kobayasi, K. I., & Hiryu, S. (2016). Rapid Frequency Control of Sonar Sounds by the FM Bat, Miniopterus Fuliginosus, in Response to Spectral Overlap. Behavioural Processes, 128, 126–133. https://doi.org/10.1016/j.beproc.2016.04.017
- Havelock, D., Kuwano, S., & Vorländer, M. (Eds.). (2008). Handbook of Signal Processing in Acoustics (1st ed.). Springer New York, NY. https://link.springer.com/book/10.1007/978-0-387-30441-0
- Hawkes, A. G. (1971). Spectra of Some Self-Exciting and Mutually Exciting Point Processes. Biometrika, 58(1). https://doi.org/10.1093/biomet/58.1.83
- Hawksford, M. J. (1999). MATLAB Program for Loudspeaker Equalization and Crossover Design. Journal of the Audio Engineering Society, 47(9), 706–719. https://www.aes.org/e-lib/browse.cfm?elib=12094
- Heikkila, J., & Silven, O. (1997). A Four-Step Camera Calibration Procedure with Implicit Image Correction. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1106–1112. https://doi.org/10.1109/CVPR.1997.609468
- Heinrich, M., & Wiegrebe, L. (2013). Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance. PLoS ONE, 8(4), e61577. https://doi.org/10.1371/journal.pone.0061577
- He, W., Pedersen, S. C., Gupta, A. K., Simmons, J. A., & Müller, R. (2015). Lancet Dynamics in Greater Horseshoe Bats, Rhinolophus Ferrumequinum. PLOS ONE, 10(4), e0121700. https://doi.org/10.1371/journal.pone.0121700
- Hiryu, S., Shiori, Y., Hosokawa, T., Riquimaroux, H., & Watanabe, Y. (2008). On-Board Telemetry of Emitted Sounds from Free-Flying Bats: Compensation for Velocity and Distance Stabilizes Echo Frequency and Amplitude. Journal of Comparative Physiology A, 194(9), 841–851. https://doi.org/10.1007/s00359-008-0355-x
- Hoffmann, S., Vega-Zuniga, T., Greiter, W., Krabichler, Q., Bley, A., Matthes, M., Zimmer, C., Firzlaff, U., & Luksch, H. (2016). Congruent Representation of Visual and Acoustic Space in the Superior Colliculus of the Echolocating Bat \mkbibemphPhyllostomus\mkbibemph Discolor. European Journal of Neuroscience, 44(9), 2685–2697. https://doi.org/10.1111/ejn.13394
- Holderied, M. W., Baker, C. J., Vespe, M., & Jones, G. (2007). Understanding Signal Design during the Pursuit of Aerial Insects by Echolocating Bats: Tools and Applications. Integrative and Comparative Biology, 48(1), 74–84. https://doi.org/10.1093/icb/icn035
- Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to Automata Theory, Languages, and Computation, 2nd Edition. SIGACT News, 32(1), 60–65. https://doi.org/10.1145/568438.568455
- Hörpel, S. G., Baier, A. L., Peremans, H., Reijniers, J., Wiegrebe, L., & Firzlaff, U. (2021). Communication Breakdown: Limits of Spectro-Temporal Resolution for the Perception of Bat Communication Calls. Scientific Reports, 11(1), 13708. https://doi.org/10.1038/s41598-021-92842-4
- Hörpel, S. G., Baier, A. L., Peremans, H., Reijniers, J., Wiegrebe, L., & Firzlaff, U. (2021). Communication Breakdown: Limits of Spectro-Temporal Resolution for the Perception of Bat Communication Calls. Scientific Reports, 11(1), 13708. https://doi.org/10.1038/s41598-021-92842-4
- Hulgard, K., Moss, C. F., Jakobsen, L., & Surlykke, A. (2015). Big Brown Bats (Eptesicus Fuscus) Emit Intense Search Calls and Fly in Stereotyped Flight Paths as They Forage in the Wild. Journal of Experimental Biology, 219(3), 334–340. https://doi.org/10.1242/jeb.128983
- ISO9612-2. (1996). Acoustics – Attenuation of Sound during Propagation Outdoors – Part 2 General Method of Calculation. https://www.warrington.gov.uk/sites/default/files/2023-04/CD%204.48%20%20%20%20International%20Standard%20ISO%209613-2%20%E2%80%93%20Acoustics%20%E2%80%93%20Attenuation%20of%20sound%20during%20propagation%20outdoors%20%E2%80%93%20Part%202%20General%20method%20of%20calculation.pdf
- Iten, R., Metger, T., Wilming, H., Del Rio, L., & Renner, R. (2020). Discovering Physical Concepts with Neural Networks. Physical Review Letters, 124(1), 010508. https://doi.org/10.1103/PhysRevLett.124.010508
- Jacobs, D. S., & Bastian, A. (2016). Predator–Prey Interactions: Co-evolution between Bats and Their Prey. https://doi.org/10.1007/978-3-319-32492-0
- Jadhav, S. P., Wolfe, J., & Feldman, D. E. (2009). Sparse Temporal Coding of Elementary Tactile Features during Active Whisker Sensation. Nature Neuroscience, 12(6), 792–800. https://doi.org/10.1038/nn.2328
- Jadhav, S. P., & Feldman, D. E. (2010). Texture Coding in the Whisker System. Current Opinion in Neurobiology, 20(3), 313–318. https://doi.org/10.1016/j.conb.2010.02.014
- Jakobsen, L., Ratcliffe, J. M., & Surlykke, A. (2013). Convergent Acoustic Field of View in Echolocating Bats. Nature, 493(7430), 93–96. https://doi.org/10.1038/nature11664
- Jakobsen, L., Brinkløv, S., & Surlykke, A. (2013). Intensity and Directionality of Bat Echolocation Signals. Frontiers in Physiology, 4, 89. https://doi.org/10.3389/fphys.2013.00089
- Jakobsen, L., Wisniewska, D. M., Häfele, F. T., Rajaeasparan, J. T., Nielsen, J. B., & Ratcliffe, J. M. (2025). Velocity as an Overlooked Driver in the Echolocation Behavior of Aerial Hawking Vespertilionid Bats. Current Biology, S096098222401710X. https://doi.org/10.1016/j.cub.2024.12.042
- Jakobsen, L., & Surlykke, A. (2010). Vespertilionid Bats Control the Width of Their Biosonar Sound Beam Dynamically during Prey Pursuit. Proceedings of the National Academy of Sciences, 107(31), 13930–13935. https://doi.org/10.1073/pnas.1006630107
- Jebb, D., Huang, Z., Pippel, M., Hughes, G. M., Lavrichenko, K., Devanna, P., Winkler, S., Jermiin, L. S., Skirmuntt, E. C., Katzourakis, A., Burkitt-Gray, L., Ray, D. A., Sullivan, K. A. M., Roscito, J. G., Kirilenko, B. M., Dávalos, L. M., Corthals, A. P., Power, M. L., Jones, G., … Teeling, E. C. (2020). Six Reference-Quality Genomes Reveal Evolution of Bat Adaptations. Nature, 583(7817), 578–584. https://doi.org/10.1038/s41586-020-2486-3
- Jens, K. Arrayvolution: Using Microphone Arrays to Study Bats in the Field. Retrieved June 1, 2025, from https://cdnsciencepub.com/doi/10.1139/cjz-2017-0187
- Jewell, W. S. (1960). The Properties of Recurrent-Event Processes. Operations Research. https://doi.org/10.1287/opre.8.4.446
- Johnson, M., Hickmott, L. S., Aguilar Soto, N., & Madsen, P. T. (2008). Echolocation Behaviour Adapted to Prey in Foraging Blainville’s Beaked Whale (Mesoplodon Densirostris). Proceedings. Biological Sciences, 275(1631), 133–139. https://doi.org/10.1098/rspb.2007.1190
- Jones, G., & Holderied, M. W. (2007). Bat Echolocation Calls: Adaptation and Convergent Evolution. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 905–912. https://doi.org/10.1098/rspb.2006.0200
- Jones, G., & Holderied, M. W. (2007). Bat Echolocation Calls: Adaptation and Convergent Evolution. Proceedings. Biological Sciences, 274(1612), 905–912. https://doi.org/10.1098/rspb.2006.0200
- Jones, G., & Siemers, B. M. (2011). The Communicative Potential of Bat Echolocation Pulses. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 447–457. https://doi.org/10.1007/s00359-010-0565-x
- Jones, G., & Siemers, B. M. (2011). The Communicative Potential of Bat Echolocation Pulses. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 447–457. https://doi.org/10.1007/s00359-010-0565-x
- Jones, G., & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001
- Jones, G., & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001
- Jones, T. K., & Conner, W. E. (2019). The Jamming Avoidance Response in Echolocating Bats. Communicative & Integrative Biology, 12(1), 10–13. https://doi.org/10.1080/19420889.2019.1568818
- Jones, P. L., Ryan, M. J., & Page, R. A. (2014). Population and Seasonal Variation in Response to Prey Calls by an Eavesdropping Bat. Behavioral Ecology and Sociobiology, 68(4), 605–615. https://doi.org/10.1007/s00265-013-1675-6
- Jones, G. (1994). Scaling of Wingbeat and Echolocation Pulse Emission Rates in Bats: Why Are Aerial Insectivorous Bats so Small? Functional Ecology, 8(4), 450–457. https://doi.org/10.2307/2390068
- Jung, K., Kalko, E. K. V., & Helversen, O. V. (2007). Echolocation Calls in Central American Emballonurid Bats: Signal Design and Call Frequency Alternation. Journal of Zoology, 272(2), 125–137. https://doi.org/10.1111/j.1469-7998.2006.00250.x
- Kalko, E. K. V., & Schnitzler, H.-U. (1989). The Echolocation and Hunting Behavior of Daubenton’s Bat, Myotis Daubentoni. Behavioral Ecology and Sociobiology, 24(4), 225–238. https://doi.org/10.1007/BF00295202
- Kalko, E. K. V., & Schnitzler, H.-U. (1993). Plasticity in Echolocation Signals of European Pipistrelle Bats in Search Flight: Implications for Habitat Use and Prey Detection. Behavioral Ecology and Sociobiology, 33(6), 415–428. https://doi.org/10.1007/bf00170257
- Kalman, R. E. (1960). On the General Theory of Control Systems. IFAC Proceedings Volumes, 1(1), 491–502. https://doi.org/10.1016/S1474-6670(17)70094-8
- Kane, S. A., & Zamani, M. (2014). Falcons Pursue Prey Using Visual Motion Cues: New Perspectives from Animal-Borne Cameras. Journal of Experimental Biology, 217(2), 225–234. https://doi.org/10.1242/jeb.092403
- Kick, S. A., & Simmons, J. A. (1984). Automatic Gain Control in the Bat’s Sonar Receiver and the Neuroethology of Echolocation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 4(11), 2725–2737. https://doi.org/10.1523/jneurosci.04-11-02725.1984
- Kim, D., DeBriere, T. J., Cherukumalli, S., White, G. S., & Burkett-Cadena, N. D. (2021). Infrared Light Sensors Permit Rapid Recording of Wingbeat Frequency and Bioacoustic Species Identification of Mosquitoes. Scientific Reports, 11(1), 10042. https://doi.org/10.1038/s41598-021-89644-z
- King, S. L., Friedman, W. R., Allen, S. J., Gerber, L., Jensen, F. H., Wittwer, S., Connor, R. C., & Krützen, M. (2018). Bottlenose Dolphins Retain Individual Vocal Labels in Multi-level Alliances. Current Biology, 28(12), 1993–1999.e3. https://doi.org/10.1016/j.cub.2018.05.013
- Knowles, J. M., Barchi, J. R., Gaudette, J. E., & Simmons, J. A. (2015). Effective Biosonar Echo-to-Clutter Rejection Ratio in a Complex Dynamic Scene. The Journal of the Acoustical Society of America, 138(2), 1090–1101. https://doi.org/10.1121/1.4915001
- Koblitz, J. C. (2018). Arrayvolution: Using Microphone Arrays to Study Bats in the Field. Canadian Journal of Zoology, 96(9), 933–938. https://doi.org/10.1139/cjz-2017-0187
- Koblitz, J. C., Stilz, P., & Schnitzler, H.-U. (2010). Source Levels of Echolocation Signals Vary in Correlation with Wingbeat Cycle in Landing Big Brown Bats (Eptesicus Fuscus). Journal of Experimental Biology, 213(19), 3263–3268. https://doi.org/10.1242/jeb.045450
- Kopsinis, Y., Aboutanios, E., Waters, D. A., & McLaughlin, S. (2009). Investigation of Bat Echolocation Calls Using High Resolution Spectrogram and Instantaneous Frequency Based Analysis. 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 557–560. https://doi.org/10.1109/ssp.2009.5278516
- Kothari, N. B., Wohlgemuth, M. J., Hulgard, K., Surlykke, A., & Moss, C. F. (2014). Timing Matters: Sonar Call Groups Facilitate Target Localization in Bats. Frontiers in Physiology, 5. https://doi.org/10.3389/fphys.2014.00168
- Kounitsky, P., Rydell, J., Amichai, E., Boonman, A., Eitan, O., Weiss, A. J., & Yovel, Y. (2015). Bats Adjust Their Mouth Gape to Zoom Their Biosonar Field of View. Proceedings of the National Academy of Sciences, 112(21), 6724–6729. https://doi.org/10.1073/pnas.1422843112
- Kuc, R. (2011). Bat Noseleaf Model: Echolocation Function, Design Considerations, and Experimental Verification. The Journal of the Acoustical Society of America, 129(5), 3361–3366. https://doi.org/10.1121/1.3569703
- Kuc, R. (2009). Model Predicts Bat Pinna Ridges Focus High Frequencies to Form Narrow Sensitivity Beams. The Journal of the Acoustical Society of America, 125(5), 3454. https://doi.org/10.1121/1.3097500
- Kuc, R. (2010). Morphology Suggests Noseleaf and Pinnae Cooperate to Enhance Bat Echolocation. The Journal of the Acoustical Society of America, 128(5), 3190–3199. https://doi.org/10.1121/1.3488304
- Kugler, K., & Wiegrebe, L. (2017). Echo-Acoustic Scanning with Noseleaf and Ears in Phyllostomid Bats. Journal of Experimental Biology, 220(15), 2816–2824. https://doi.org/10.1242/jeb.160309
- Kwiecinski, G. G. (2006). Phyllostomus Discolor. Mammalian Species, 801, 1–11. https://doi.org/10.1644/801.1
- Lasky, P. D., Thrane, E., Levin, Y., Blackman, J., & Chen, Y. (2016). Detecting Gravitational-Wave Memory with LIGO: Implications of GW150914. Physical Review Letters, 117(6), 061102. https://doi.org/10.1103/PhysRevLett.117.061102
- Lattenkamp, E. Z., Nagy, M., Drexl, M., Vernes, S. C., Wiegrebe, L., & Kneornschild, M. (2021). Hearing Sensitivity and Amplitude Coding in Bats Are Differentially Shaped by Echolocation Calls and Social Calls. Proceedings of the Royal Society B: Biological Sciences, 288(1942), 20202600. https://doi.org/10.1098/rspb.2020.2600
- Lattenkamp, E. Z., Vernes, S. C., & Wiegrebe, L. (2020). Vocal Production Learning in the Pale Spear-Nosed Bat, Phyllostomus Discolor. Biology Letters, 16(4), 20190928. https://doi.org/10.1098/rsbl.2019.0928
- Lawrence, B. D., & Simmons, J. A. (1982). Echolocation in Bats: The External Ear and Perception of the Vertical Positions of Targets. Science, 218(4571), 481–483. https://doi.org/10.1126/science.7123247
- Lazure, L., & Fenton, M. B. (2011). High Duty Cycle Echolocation and Prey Detection by Bats. Journal of Experimental Biology, 214(7), 1131–1137. https://doi.org/10.1242/jeb.048967
- Lee, W.-J., Falk, B., Chiu, C., Krishnan, A., Arbour, J. H., & Moss, C. F. (2017). Tongue-Driven Sonar Beam Steering by a Lingual-Echolocating Fruit Bat. PLoS Biology, 15(12), e2003148. https://doi.org/10.1371/journal.pbio.2003148
- Leis, J. W. (2011). Digital Signal Processing Using MATLAB for Students and Researchers. John Wiley & Sons, Inc.
- Leiser‐Miller, L. B., & Santana, S. E. (2021). Functional Differences in Echolocation Call Design in an Adaptive Radiation of Bats. Ecology and Evolution, 11(22), 16153–16164. https://doi.org/10.1002/ece3.8296
- Leiser-Miller, L. B., & Santana, S. E. (2020). Morphological Diversity in the Sensory System of Phyllostomid Bats: Implications for Acoustic and Dietary Ecology. Functional Ecology, 34(7), 1416–1427. https://doi.org/10.1111/1365-2435.13561
- Li, X., Wang, H., Wang, X., Bao, M., Sun, R., Dai, W., Sun, K., & Feng, J. (2024). Molecular Adaptations Underlying High-Frequency Hearing in the Brain of CF Bats Species. BMC Genomics, 25(1), 279. https://doi.org/10.1186/s12864-024-10212-6
- Lin, Y., Abaid, N., & Müller, R. (2016). Bats Adjust Their Pulse Emission Rates with Swarm Size in the Field. The Journal of the Acoustical Society of America, 140(6), 4318. https://doi.org/10.1121/1.4971331
- Linnenschmidt, M., & Wiegrebe, L. (2016). Sonar Beam Dynamics in Leaf-Nosed Bats. Scientific Reports, 6(1), 29222. https://doi.org/10.1038/srep29222
- Llopis-Albert, C., Venegas Toro, W. R., Farhat, N., Zamora-Ortiz, P., & Page Del Pozo, A. F. (2021). A New Method for Time Normalization Based on the Continuous Phase: Application to Neck Kinematics. Mathematics, 9(23), 3138. https://doi.org/10.3390/math9233138
- López-González, C., & Ocampo-Ramírez, C. (2022). External Ears in Chiroptera: Form-Function Relationships in an Ecological Context. Acta Chiropterologica, 23(2). https://doi.org/10.3161/15081109ACC2021.23.2.019
- Lourie, E., Shamay, T., Toledo, S., & Nathan, R. (2024). Spatial Memory Obviates Following Behaviour in an Information Centre of Wild Fruit Bats. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 379(1912), 20240060. https://doi.org/10.1098/rstb.2024.0060
- Lu, M., Zhang, G., & Luo, J. (2020). Echolocating Bats Exhibit Differential Amplitude Compensation for Noise Interference at a Sub-Call Level. Journal of Experimental Biology, 223(19), jeb225284. https://doi.org/10.1242/jeb.225284
- Luo, J., & Wiegrebe, L. (2016). Biomechanical Control of Vocal Plasticity in an Echolocating Bat. Journal of Experimental Biology, jeb.134957. https://doi.org/10.1242/jeb.134957
- Luo, J., Lu, M., Luo, J., & Moss, C. F. (2022). Echo Feedback Mediates Noise-Induced Vocal Modifications in Flying Bats. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01585-8
- Luo, J. (2015). Linking the Sender to the Receiver: Vocal Adjustments by Bats to Maintain Signal Detection in Noise. Scientific Reports, 11.
- Luo, J., Lingner, A., Firzlaff, U., & Wiegrebe, L. (2016). The Lombard Effect Emerges Early in Young Bats: Implications for the Development of Audio-Vocal Integration. Journal of Experimental Biology, jeb.151050. https://doi.org/10.1242/jeb.151050
- MacDonald, J. A., & Tran, P. K. (2007). Loudspeaker Equalization for Auditory Research. Behavior Research Methods, 39(1), 133–136. https://doi.org/10.3758/BF03192851
- Mackey, R. L., & Barclay, R. M. R. (1989). The Infl1uence of Physical Clutter and Noise on the Activity of Bats over Water. Canadian Journal of Zoology, 67(5), 1167–1170. https://doi.org/10.1139/z89-168
- Madsen, P. T., & Surlykke, A. (2013). Functional Convergence in Bat and Toothed Whale Biosonars. Physiology (Bethesda, Md.), 28(5), 276–283. https://doi.org/10.1152/physiol.00008.2013
- Madsen, P. T., & Wahlberg, M. (2007). Recording and Quantification of Ultrasonic Echolocation Clicks from Free-Ranging Toothed Whales. Deep Sea Research Part I: Oceanographic Research Papers, 54(8), 1421–1444. https://doi.org/10.1016/j.dsr.2007.04.020
- Malinka, C. E., Rojano-Doñate, L., & Madsen, P. T. (2021). Directional Biosonar Beams Allow Echolocating Harbour Porpoises to Actively Discriminate and Intercept Closely Spaced Targets. Journal of Experimental Biology, 224(16), jeb242779. https://doi.org/10.1242/jeb.242779
- Marshall, K. L., Chadha, M., deSouza, L. A., Sterbing-D’Angelo, S. J., Moss, C. F., & Lumpkin, E. A. (2015). Somatosensory Substrates of Flight Control in Bats. Cell Reports, 11(6), 851–858. https://doi.org/10.1016/j.celrep.2015.04.001
- Marwan, N., Carmen Romano, M., Thiel, M., & Kurths, J. (2007). Recurrence Plots for the Analysis of Complex Systems. Physics Reports, 438(5), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001
- Ma, X., Zhang, S., Dong, Z., Lu, H., Li, J., & Zhou, W. (2020). Special Acoustical Role of Pinna Simplifying Spatial Target Localization by the Brown Long-Eared Bat Plecotus Auritus. Physical Review E, 102(4), 040401. https://doi.org/10.1103/physreve.102.040401
- Matsuta, N., Hiryu, S., Fujioka, E., Yamada, Y., Riquimaroux, H., & Watanabe, Y. (2013). Adaptive Beam-Width Control of Echolocation Sounds by CF–FM Bats, Rhinolophus Ferrumequinum Nippon, during Prey-Capture Flight. Journal of Experimental Biology, 216(7), 1210–1218. https://doi.org/10.1242/jeb.081398
- Mazar, O., & Yovel, Y. (2020). A Sensorimotor Model Shows Why a Spectral Jamming Avoidance Response Does Not Help Bats Deal with Jamming. ELife, 9, e55539. https://doi.org/10.7554/eLife.55539
- McCracken, G. F., Gillam, E. H., Westbrook, J. K., Lee, Y.-F., Jensen, M. L., & Balsley, B. B. (2007). Brazilian Free-Tailed Bats (Tadarida Brasiliensis: Molossidae, Chiroptera) at High Altitude: Links to Migratory Insect Populations. Integrative and Comparative Biology, 48(1), 107–118. https://doi.org/10.1093/icb/icn033
- Metzner, W. (1993). An Audio-Vocal Interface in Echolocating Horseshoe Bats. Journal of Neuroscience, 13(5), 1899–1915. https://doi.org/10.1523/JNEUROSCI.13-05-01899.1993
- Metzner, W. (1989). A Possible Neuronal Basis for Doppler-shift Compensation in Echo-Locating Horseshoe Bats. Nature, 341(6242), 529–532. https://doi.org/10.1038/341529a0
- Miller, L. A., & Surlykke, A. (2001). How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator. BioScience, 51(7), 570. https://doi.org/10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2
- Ming, C., Gupta, A. K., Lu, R., Zhu, H., & Müller, R. (2017). A Computational Model for Biosonar Echoes from Foliage. PLOS ONE, 12(8), e0182824. https://doi.org/10.1371/journal.pone.0182824
- Ming, C., Zhu, H., & Müller, R. (2017). A Simplified Model of Biosonar Echoes from Foliage and the Properties of Natural Foliages. PLOS ONE, 12(12), e0189824. https://doi.org/10.1371/journal.pone.0189824
- Mizuguchi, Y., Fujioka, E., Heim, O., Fukui, D., & Hiryu, S. (2022). Discriminating Predation Attempt Outcomes during Natural Foraging Using the Post-Buzz Pause in the Japanese Large-Footed Bat, Myotis Macrodactylus. Journal of Experimental Biology, 225(7), jeb243402. https://doi.org/10.1242/jeb.243402
- Mogdans, J., Ostwald, J., & Schnitzler, H. U. (1988). The Role of Pinna Movement for the Localization of Vertical and Horizontal Wire Obstacles in the Greater Horseshoe Bat, R h i n o l o p u s f e r r u m e q u i n u m. The Journal of the Acoustical Society of America, 84(5), 1676–1679. https://doi.org/10.1121/1.397183
- Mogensen, F., & Mohl, B. (1979). Sound Radiation Patterns in the Frequency Domain of Cries from a Vespertilionid Bat. Journal of Comparative Physiology ? A, 134(2), 165–171. https://doi.org/10.1007/BF00610475
- Montoya, J., Lee, Y., & Salles, A. (2022). Social Communication in Big Brown Bats. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.903107
- Moss, C. F., Bohn, K., Gilkenson, H., & Surlykke, A. (2006). Active Listening for Spatial Orientation in a Complex Auditory Scene. PLOS Biology, 4(4), e79. https://doi.org/10.1371/journal.pbio.0040079
- Moss, C. (2012). Adaptive Echolocation Behavior in a Complex Sonar Scene. The Journal of the Acoustical Society of America, 131, 3360–3360. https://doi.org/10.1121/1.4708649
- Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive Vocal Behavior Drives Perception by Echolocation in Bats. Current Opinion in Neurobiology, 21(4), 645–652. https://doi.org/10.1016/j.conb.2011.05.028
- Moss, C. F., & Surlykke, A. (2001). Auditory Scene Analysis by Echolocation in Bats. The Journal of the Acoustical Society of America, 110(4), 2207–2226. https://doi.org/10.1121/1.1398051
- Moss, C., Ghose, K., & Surlykke, A. (2008). The Echolocating Bat Controls the Direction and Distance of Its Acoustic Gaze.
- Moss, C. F., & Surlykke, A. (2010). Probing the Natural Scene by Echolocation in Bats. Frontiers in Behavioral Neuroscience, 4. https://doi.org/10.3389/fnbeh.2010.00033
- Mulla, D. M., & Keir, P. J. (2023). Neuromuscular Control: From a Biomechanist’s Perspective. Frontiers in Sports and Active Living, 5. https://doi.org/10.3389/fspor.2023.1217009
- Mulla, D. M., & Keir, P. J. (2023). Neuromuscular Control: From a Biomechanist’s Perspective. Frontiers in Sports and Active Living, 5. https://doi.org/10.3389/fspor.2023.1217009
- Müller, R. (2010). Numerical Analysis of Biosonar Beamforming Mechanisms and Strategies in Bats. The Journal of the Acoustical Society of America, 128(3), 1414. https://doi.org/10.1121/1.3365246
- Müller, R., Lu, H., & Buck, J. R. (2008). Sound-Diffracting Flap in the Ear of a Bat Generates Spatial Information. Physical Review Letters, 100(10), 108701. https://doi.org/10.1103/PhysRevLett.100.108701
- Nachtigall, P. E. (1989). Animal Sonar: Processes and Performance (Number v.156). Springer.
- Nehorai, A., & Paldi, E. (1994). Acoustic Vector-Sensor Array Processing. IEEE Transactions on Signal Processing, 42(9), 2481–2491. https://doi.org/10.1109/78.317869
- Neil, T. R., Shen, Z., Robert, D., Drinkwater, B. W., & Holderied, M. W. (2022). Moth Wings as Sound Absorber Metasurface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2262), 20220046. https://doi.org/10.1098/rspa.2022.0046
- Neil, T. R., Kennedy, E. E., Harris, B. J., & Holderied, M. W. (2021). Wingtip Folds and Ripples on Saturniid Moths Create Decoy Echoes against Bat Biosonar. Curr Biol, 31(21), 4824–4830.e3. https://doi.org/10.1016/j.cub.2021.08.038
- Neuweiler, G. (1990). Auditory Adaptations for Prey Capture in Echolocating Bats. Physiological Reviews, 70(3), 615–641. https://doi.org/10.1152/physrev.1990.70.3.615
- Neuweiler, G. (1989). Foraging Ecology and Audition in Echolocating Bats. Trends in Ecology & Evolution, 4(6), 160–166. https://doi.org/10.1016/0169-5347(89)90120-1
- Nguyen, T. H., & Vanderelst, D. (2022). Toward Behavior-Based Models of Bat Echolocation. 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 1529–1536. https://doi.org/10.1109/SSCI51031.2022.10022100
- Norberg, U. M., & Rayner, J. M. V. (1987). Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1179), 335–427. https://doi.org/10.1098/rstb.1987.0030
- Ntelezos, A., Guarato, F., & Windmill, J. F. C. (2016). The Anti-Bat Strategy of Ultrasound Absorption: The Wings of Nocturnal Moths (Bombycoidea: Saturniidae) Absorb More Ultrasound than the Wings of Diurnal Moths (Chalcosiinae: Zygaenoidea: Zygaenidae). Biology Open, bio.021782. https://doi.org/10.1242/bio.021782
- Nuzzo, R. (2004). P Values, the ‘Gold Standard’ of Statistical Validity, Are Not as Reliable as Many Scientists Assume. 3.
- Obrist, M. K., Fenton, M. B., Eger, J. L., & Schlegel, P. A. (1993). What Ears Do for Bats: A Comparative Study of Pinna Sound Pressure Transformation in Chiroptera. The Journal of Experimental Biology, 180, 119–152.
- Ogata, Y., & Akaike, H. (1982). On Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self- Exciting Point Processes. Journal of the Royal Statistical Society. Series B (Methodological), 44(1), 102–107. https://www.jstor.org/stable/2984715
- O’Neill, M. G., & Taylor, R. J. (1986). Observations on the Flight Patterns and Foraging Behaviour of Tasmanian Bats. Wildlife Research, 13(3), 427–432. https://doi.org/10.1071/wr9860427
- Otani, M., & Ise, S. (2006). Fast Calculation System Specialized for Head-Related Transfer Function Based on Boundary Element Method. The Journal of the Acoustical Society of America, 119(5), 2589–2598. https://doi.org/10.1121/1.2191608
- Pedersen, M. B., Uebel, A. S., Beedholm, K., Foskolos, I., Stidsholt, L., & Madsen, P. T. (2022). Echolocating Daubenton’s Bats Call Louder, but Show No Spectral Jamming Avoidance in Response to Bands of Masking Noise during a Landing Task. Journal of Experimental Biology, 225(7), jeb243917. https://doi.org/10.1242/jeb.243917
- Pedersen, M. B., Egenhardt, M., Beedholm, K., Skalshøi, M. R., Uebel, A. S., Hubancheva, A., Koseva, K., Moss, C. F., Luo, J., Stidsholt, L., & Madsen, P. T. (2024). Superfast Lombard Response in Free-Flying, Echolocating Bats. Current Biology, 0(0). https://doi.org/10.1016/j.cub.2024.04.048
- Pedrozo, A. R., Gomes, L. A. C., & Uieda, W. (2018). Feeding Behavior and Activity Period of Three Neotropical Bat Species (Chiroptera: Phyllostomidae) on \mkbibemphMusa\mkbibemph Paradisiaca Inflorescences (Zingiberales: Musaceae). Iheringia. Série Zoologia, 108. https://doi.org/10.1590/1678-4766e2018022
- Perceptual Hearing Sensitivity during Vocal Production | Elsevier Enhanced Reader. https://doi.org/10.1016/j.isci.2022.105435
- Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., … Project, T. S. C. (1999). Measurements of Ω and Λ from 42 High‐Redshift Supernovae. The Astrophysical Journal, 517(2), 565–586. https://doi.org/10.1086/307221
- Perrine, J. O. (1944). The Doppler and Echo Doppler Effect. American Journal of Physics, 12(1), 23–28. https://doi.org/10.1119/1.1990527
- Prat, Y., & Yovel, Y. (2020). Decision Making in Foraging Bats. Current Opinion in Neurobiology, 60, 169–175. https://doi.org/10.1016/j.conb.2019.12.006
- Pye, J. D., & Roberts, L. H. (1970). Ear Movements in a Hipposiderid Bat. Nature, 225(5229), 285–286. https://doi.org/10.1038/225285a0
- Pye, J. D. (1993). IS FIDELITY FUTILE? THE ‘TRUE’ SIGNAL IS ILLUSORY, ESPECIALLY WITH ULTRASOUND. Bioacoustics, 4(4), 271–286. https://doi.org/10.1080/09524622.1993.10510438
- Qiu, P., & Müller, R. (2020). Variability in the Rigid Pinna Motions of Hipposiderid Bats and Their Impact on Sensory Information Encoding. The Journal of the Acoustical Society of America, 147(1), 469. https://doi.org/10.1121/10.0000582
- Ratcliffe, J. M., & Jakobsen, L. (2018). Don’t Believe the Mike: Behavioural, Directional, and Environmental Impacts on Recorded Bat Echolocation Call Measures. Canadian Journal of Zoology, 96(4), 283–288. https://doi.org/10.1139/cjz-2017-0219
- Ratcliffe, J. (2015). Ultrasonic and Superfast: Design Constraints on Echolocation in Bats. The Journal of the Acoustical Society of America, 138, 1931–1931. https://doi.org/10.1121/1.4934086
- Register Reference - FLIR Machine Vision Cameras. (2017). FLIR Integrated Imaging Solutions Inc. https://www.flir.de/globalassets/support/iis/knowledge-base/flir-machine-vision-camera-register-reference.pdf
- Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., & Tonry, J. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116(3), 1009. https://doi.org/10.1086/300499
- Rocchesso, D. (2003). Introduction to Sound Processing. Mondo estremo.
- Rojas, D., Vale, A., Ferrero, V., & Navarro, L. (2012). The Role of Frugivory in the Diversification of Bats in the Neotropics. Journal of Biogeography, 39(11), 1948–1960. https://doi.org/10.1111/j.1365-2699.2012.02709.x
- Rojas, D., Vale, A., Ferrero, V., & Navarro, L. (2011). When Did Plants Become Important to Leaf-Nosed Bats? Diversification of Feeding Habits in the Family Phyllostomidae: EVOLUTION OF FEEDING HABITS IN PHYLLOSTOMID BATS. Molecular Ecology, 20(10), 2217–2228. https://doi.org/10.1111/j.1365-294X.2011.05082.x
- Rossing, T. D. (Ed.). (2014). Springer Handbook of Acoustics (2nd ed.).
- Rovina, H., Salam, T., Kantaros, Y., & Ani Hsieh, M. (2020). Asynchronous Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot Teams via Intermittently Connected Networks. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4798–4805. https://doi.org/10.1109/IROS45743.2020.9341636
- Salles, A., Diebold, C. A., & F. Moss, C. (2021). Bat Target Tracking Strategies for Prey Interception. Communicative & Integrative Biology, 14(1), 37–40. https://doi.org/10.1080/19420889.2021.1898751
- Sanderson, M. I., & Simmons, J. A. (2000). Neural Responses to Overlapping FM Sounds in the Inferior Colliculus of Echolocating Bats. Journal of Neurophysiology, 83(4), 1840–1855. https://doi.org/10.1152/jn.2000.83.4.1840
- Schmidt, S., & Thaller, J. (1994). Temporal Auditory Summation in the Echolocating Bat, \mkbibemphTadarida\mkbibemph Brasiliensis. Hearing Research, 77(1), 125–134. https://doi.org/10.1016/0378-5955(94)90260-7
- Schneider, H., & Möhres, F. P. (1960). Die Ohrbewegungen Der Hufeisenfledermäuse (Chiroptera, Rhinolophidae) Und Der Mechanismus Des Bildhörens. Zeitschrfft Fiir Vergleicheinde Physiologie, 44(1), 40.
- Schneider, H. (1960). Die Ohrmuskulature von Asellia tridens GEOFFR. (Hipposideridae) und Myotis myotis BORKH (Vespertilionidae) (Chiroptera).
- SCHNITZLER, H. A. N. S.-U. L. R. I. C. H., & KALKO, E. L. I. S. A. B. E. T. H. K. V. (2001). Echolocation by Insect-Eating Bats. BioScience, 51(7), 557. https://doi.org/10.1641/0006-3568(2001)051[0557:ebieb]2.0.co;2
- Schoeppler, D., Kost, K., Schnitzler, H.-U., & Denzinger, A. (2022). Transmitter and Receiver of the Low Frequency Horseshoe Bat Rhinolophus Paradoxolophus Are Functionally Matched for Fluttering Target Detection. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01571-0
- Schoeppler, D., Kost, K., Schnitzler, H.-U., & Denzinger, A. (2023). Transmitter and Receiver of the Low Frequency Horseshoe Bat Rhinolophus Paradoxolophus Are Functionally Matched for Fluttering Target Detection. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 209(1), 191–202. https://doi.org/10.1007/s00359-022-01571-0
- Schuller, G., Beuter, K., & R�bsamen, R. (1975). Dynamic Properties of the Compensation System for Doppler Shifts in the Bat,Rhinolophus Ferrumequinum. Journal of Comparative Physiology ? A, 97(2), 113–125. https://doi.org/10.1007/BF00645356
- Schuller, G. (1977). Echo Delay and Overlap with Emitted Orientation Sounds and Doppler-Shift Compensation in the Bat,Rhinolophus Ferrumequinum. Journal of Comparative Physiology, 114(1), 103–114. https://doi.org/10.1007/BF00656811
- Schuller, G. (1986). Influence of Echolocation Pulse Rate on Doppler Shift Compensation Control System in the Greater Horseshoe Bat. Journal of Comparative Physiology A, 158(2), 239–246. https://doi.org/10.1007/BF01338567
- Schuller, G. (1974). The Role of Overlap of Echo with Outgoing Echolocation Sound in the Bat Rhinolophus Ferrumequinum. Naturwissenschaften, 61(4), 171–172. https://doi.org/10.1007/BF00602598
- Seibert, A.-M., Koblitz, J. C., Denzinger, A., & Schnitzler, H.-U. (2013). Scanning Behavior in Echolocating Common Pipistrelle Bats (Pipistrellus Pipistrellus). PLoS ONE, 8(4), e60752. https://doi.org/10.1371/journal.pone.0060752
- Shi, J. J., & Rabosky, D. L. (2015). Speciation Dynamics during the Global Radiation of Extant Bats. Evolution, 69(6), 1528–1545. https://doi.org/10.1111/evo.12681
- Shriram, U., & Simmons, J. A. (2019). Echolocating Bats Perceive Natural-Size Targets as a Unitary Class Using Micro-Spectral Ripples in Echoes. Behavioral Neuroscience, 133(3), 297–304. https://doi.org/10.1037/bne0000315
- Simmons, J. A., & Stein, R. A. (1980). Acoustic Imaging in Bat Sonar: Echolocation Signals and the Evolution of Echolocation. Journal of Comparative Physiology, 135(1), 61–84. https://doi.org/10.1007/bf00660182
- Simmons, J. A., Saillant, P. A., Wotton, J. M., Haresign, T., Ferragamo, M. J., & Moss, C. F. (1995). Composition of Biosonar Images for Target Recognition by Echolocating Bats. Neural Networks, 8(7–8), 1239–1261. https://doi.org/10.1016/0893-6080(95)00059-3
- Simmons, J. A., Moss, C. F., & Ferragamo, M. (1990). Convergence of Temporal and Spectral Information into Acoustic Images of Complex Sonar Targets Perceived by the Echolocating Bat, Eptesicus Fuscus. Journal of Comparative Physiology A, 166(4), 449–470. https://doi.org/10.1007/BF00192016
- Simmons, J. A., Kick, S. A., & Lawrence, B. D. (1984). Echolocation and Hearing in the Mouse-Tailed Bat,Rhinopoma Hardwickei: Acoustic Evolution of Echolocation in Bats. Journal of Comparative Physiology A, 154(3), 347–356. https://doi.org/10.1007/bf00605234
- Simmons, J. A. (1997). Encyclopedia of Acoustics. 1819–1822. https://doi.org/10.1002/9780470172544.ch151
- Simmons, J. A. (1979). Perception of Echo Phase Information in Bat Sonar. Science, 204(4399), 1336–1338. https://doi.org/10.1126/science.451543
- Simmons, J. A., Hom, K. N., & Simmons, A. M. (2023). Temporal Coherence of Harmonic Frequencies Affects Echo Detection in the Big Brown Bat, \mkbibemphEptesicus\mkbibemph Fuscus. The Journal of the Acoustical Society of America, 154(5), 3321–3327. https://doi.org/10.1121/10.0022444
- Simmons, J. A. (1989). A View of the World through the Bat’s Ear: The Formation of Acoustic Images in Echolocation. Cognition, 33(1–2), 155–199. https://doi.org/10.1016/0010-0277(89)90009-7
- Sleep, D. J. H., & Brigham, R. M. (2003). An Experimental Test of Clutter Tolerance in Bats. Journal of Mammalogy, 84(1), 216–224. https://doi.org/10.1644/1545-1542(2003)084<0216:AETOCT>2.0.CO;2
- Smarsh, G. C., Tarnovsky, Y., & Yovel, Y. (2021). Hearing, Echolocation, and Beam Steering from Day 0 in Tongue-Clicking Bats. Proceedings. Biological Sciences, 288(1961), 20211714. https://doi.org/10.1098/rspb.2021.1714
- Smarsh, G. C., Tarnovsky, Y., & Yovel, Y. (2021). Hearing, Echolocation, and Beam Steering from Day 0 in Tongue-Clicking Bats. Proceedings. Biological Sciences, 288(1961), 20211714. https://doi.org/10.1098/rspb.2021.1714
- Snyder, E. R., Solsona-Berga, A., Baumann-Pickering, S., Frasier, K. E., Wiggins, S. M., & Hildebrand, J. A. (2024). Where’s Whaledo: A Software Toolkit for Array Localization of Animal Vocalizations. PLOS Computational Biology, 20(5), e1011456. https://doi.org/10.1371/journal.pcbi.1011456
- Source Separation with an Acoustic Vector Sensor for Terrestrial Bioacoustics | The Journal of the Acoustical Society of America | AIP Publishing. Retrieved May 24, 2025, from https://pubs.aip.org/asa/jasa/article/152/2/1123/2838533/Source-separation-with-an-acoustic-vector-sensor
- Speakman, J. R., & Racey, P. A. (1991). No Cost of Echolocation for Bats in Flight. Nature, 350(6317), 421–423. https://doi.org/10.1038/350421a0
- Speakman, J. R., & Racey, P. A. (1991). No Cost of Echolocation for Bats in Flight. Nature, 350(6317), 421–423. https://doi.org/10.1038/350421a0
- Speakman, J. R., Bullock, D. J., Eales, L. A., & Racey, P. A. (1992). A Problem Defining Temporal Pattern in Animal Behaviour: Clustering in the Emergence Behaviour of Bats from Maternity Roosts. Animal Behaviour, 43(3), 491–500. https://doi.org/10.1016/S0003-3472(05)80107-1
- Spiesberger, J. L. (2001). Hyperbolic Location Errors Due to Insufficient Numbers of Receivers. The Journal of the Acoustical Society of America, 109(6), 3076–3079. https://doi.org/10.1121/1.1373442
- Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., Salles, A., Moss, C. F., & Madsen, P. T. (2019). A 2.6g Sound and Movement Tag for Studying the Acoustic Scene and Kinematics of Echolocating Bats. Methods in Ecology and Evolution, 10(1), 48–58. https://doi.org/10.1111/2041-210x.13108
- Stidsholt, L., Greif, S., Goerlitz, H. R., Beedholm, K., Macaulay, J., Johnson, M., & Madsen, P. T. (2021). Hunting Bats Adjust Their Echolocation to Receive Weak Prey Echoes for Clutter Reduction. Science Advances, 7(10), eabf1367. https://doi.org/10.1126/sciadv.abf1367
- Stidsholt, L., Johnson, M., Goerlitz, H. R., & Madsen, P. T. (2021). Wild Bats Briefly Decouple Sound Production from Wingbeats to Increase Sensory Flow during Prey Captures. IScience, 24(8), 102896. https://doi.org/10.1016/j.isci.2021.102896
- Stowell, D. (2022). Computational Bioacoustics with Deep Learning: A Review and Roadmap. PeerJ, 10, e13152. https://doi.org/10.7717/peerj.13152
- Strother, G. K., & Mogus, M. (1970). Acoustical Beam Patterns for Bats: Some Theoretical Considerations. The Journal of the Acoustical Society of America, 48(6B), 1430–1432. https://doi.org/10.1121/1.1912304
- Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic Scanning of Natural Scenes by Echolocation in the Big Brown Bat, Eptesicus Fuscus. Journal of Experimental Biology, 212(7), 1011–1020. https://doi.org/10.1242/jeb.024620
- Surlykke, A., Jakobsen, L., Brinkloev, S., & Moss, C. (2009). Bats Control the Auditory Scene by Adapting Intensity and Directionality of Echolocation Calls. The Journal of the Acoustical Society of America, 126, 2271–2271. https://doi.org/10.1121/1.3249296
- Surlykke, A., Nachtigall, P. E., Fay, R. R., & Popper, A. N. (Eds.). (2014). Biosonar (Vol. 51). Springer New York. https://doi.org/10.1007/978-1-4614-9146-0
- Surlykke, A., & Nachtigall, P. E. (2014). Biosonar of Bats and Toothed Whales: An Overview. In Biosonar (pp. 1–9).
- Surlykke, A., & Kalko, E. K. V. (2008). Echolocating Bats Cry Out Loud to Detect Their Prey. PLoS ONE, 3(4), e2036. https://doi.org/10.1371/journal.pone.0002036
- Surlykke, A., Boel Pedersen, S., & Jakobsen, L. (2008). Echolocating Bats Emit a Highly Directional Sonar Sound Beam in the Field. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 853–860. https://doi.org/10.1098/rspb.2008.1505
- Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating Bats Emit a Highly Directional Sonar Sound Beam in the Field. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 853–860. https://doi.org/10.1098/rspb.2008.1505
- Surlykke, A., Jakobsen, L., Kalko, E. K. V., & Page, R. A. (2013). Echolocation Intensity and Directionality of Perching and Flying Fringe-Lipped Bats, Trachops Cirrhosus (Phyllostomidae). Frontiers in Physiology, 4, 143. https://doi.org/10.3389/fphys.2013.00143
- Surlykke, A., Futtrup, V., & Tougaard, J. (2003). Prey-Capture Success Revealed by Echolocation Signals in Pipistrelle Bats (Pipistrellus Pygmaeus). Journal of Experimental Biology, 206(1), 93–104. https://doi.org/10.1242/jeb.00049
- Sutherland, L. C., Piercy, J. E., Bass, H. E., & Evans, L. B. (1974). Method for Calculating the Absorption of Sound by the Atmosphere. The Journal of the Acoustical Society of America, 56(S1), S1. https://doi.org/10.1121/1.1914056
- SUTHERS, R. O. D. E. R. I. C. K. A., THOMAS, S. T. E. V. E. N. P., & SUTHERS, B. A. R. B. A. R. A. J. (1972). Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat. Journal of Experimental Biology, 56, 37–48. https://jeb.biologists.org/content/56/1/37.short
- Takahashi, E., Hyomoto, K., Riquimaroux, H., Watanabe, Y., Ohta, T., & Hiryu, S. (2014). Adaptive Changes in Echolocation Sounds by Pipistrellus Abramus in Response to Artificial Jamming Sounds. The Journal of Experimental Biology, 217(Pt 16), 2885–2891. https://doi.org/10.1242/jeb.101139
- Tan, L., & Jiang, J. (2014). Digital Signal Processing - Fundamentals and Applications. https://www.sciencedirect.com/book/9780124158931/digital-signal-processing
- Taub, M., Goldshtein, A., Boonman, A., Eitan, O., Hurme, E., Greif, S., & Yovel, Y. (2023). What Determines the Information Update Rate in Echolocating Bats. Communications Biology, 6(1), 1–8. https://doi.org/10.1038/s42003-023-05563-x
- Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’brien, S. J., & Murphy, W. J. (2005). A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record. Science (New York, N.Y.), 307(5709), 580–584. https://doi.org/10.1126/science.1105113
- Tellechea, J. (2020). Echolocation Inter-Click Interval Variation among Specific Behaviours in Free-Ranging Bottlenose Dolphins from the Coast of Uruguay. J. Cetacean Res. Manage., 21(1), 141–149. https://doi.org/10.47536/jcrm.v21i1.192
- Teshima, Y., Yamada, Y., Tsuchiya, T., Heim, O., & Hiryu, S. (2022). Analysis of Echolocation Behavior of Bats in “Echo Space” Using Acoustic Simulation. BMC Biology, 20(1), 59. https://doi.org/10.1186/s12915-022-01253-y
- Teshima, Y., Nomura, T., Kato, M., Tsuchiya, T., Shimizu, G., & Hiryu, S. (2022). Effect of Bat Pinna on Sensing Using Acoustic Finite Difference Time Domain Simulation. The Journal of the Acoustical Society of America, 151(6), 4039–4045. https://doi.org/10.1121/10.0011737
- Teshima, Y., Genda, S., Aoki, Y., Fujisawa, M., Hiryu, S., & Fujii, K. (2025). Flight Trajectory Modeling Reveals Species-Specific Obstacle Avoidance Policies in Echolocating Bats (p. 2025.06.13.659477). https://doi.org/10.1101/2025.06.13.659477
- Teshima, Y., Hasegawa, Y., Tsuchiya, T., Moriyama, R., Genda, S., Kawamura, T., & Hiryu, S. (2022). Reconstruction of Echoes Reaching Bats in Flight from Arbitrary Targets by Acoustic Simulation. The Journal of the Acoustical Society of America, 151(3), 2127–2134. https://doi.org/10.1121/10.0009916
- Tolkova, I., & Klinck, H. (2022). Source Separation with an Acoustic Vector Sensor for Terrestrial Bioacoustics. The Journal of the Acoustical Society of America, 152(2), 1123–1134. https://doi.org/10.1121/10.0013505
- Tollin, D. J., & Yin, T. C. T. (2003). Spectral Cues Explain Illusory Elevation Effects With Stereo Sounds in Cats. Journal of Neurophysiology, 90(1), 525–530. https://doi.org/10.1152/jn.00107.2003
- Trappe, M., & Schnitzler, H.-U. (1982). Doppler-Shift Compensation in Insect-Catching Horseshoe Bats. Naturwissenschaften, 69(4), 193–194. https://doi.org/10.1007/BF00364902
- Tsuchiya, T., Teshima, Y., & Hiryu, S. (2022). Two-Dimensional Finite Difference-Time Domain Simulation of Moving Sound Source and Receiver. Acoustical Science and Technology, 43(1), 57–65. https://doi.org/10.1250/ast.43.57
- Tuninetti, A., Simmons, A. M., & Simmons, J. A. (2022). Amplitude Discrimination Is Predictably Affected by Echo Frequency Filtering in Wideband Echolocating Bats. The Journal of the Acoustical Society of America, 151(2), 982–991. https://doi.org/10.1121/10.0009486
- A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition | IEEE Journals & Magazine | IEEE Xplore. Retrieved April 15, 2025, from https://ieeexplore.ieee.org/document/18626
- Übernickel, K., Tschapka, M., & Kalko, E. K. V. (2013). Flexible Echolocation Behavior of Trawling Bats during Approach of Continuous or Transient Prey Cues. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00096
- Umadi, R. Array WAH: Widefield Acoustics Heuristic for 3D Localisation of Bat Calls. https://github.com/raviumadi/Array_WAH.git
- Umadi, R., & Firzlaff, U. (2025). Biosonar Responsivity Sets the Stage for the Terminal Buzz (p. 2025.06.16.659925). https://doi.org/10.1101/2025.06.16.659925
- Umadi, R., Wiegrebe, L., Wisniewska, D. M., Peremans, H., & Firzlaff, U. (2025). Coordination Without Coupling: Flexible Sensorimotor Strategies in Phyllostomus Discolor. In Preparation.
- Umadi, R., Wiegrebe, L., Wisniewska, D. M., Jakobsen, L., & Firzlaff, U. (2025). Dynamic Beam Shaping in Phyllostomus Discolor Is Driven by Noseleaf Morphology. in preparation.
- Umadi, R., Dookia, S., & Rydell, J. (2019). The Monumental Mistake of Evicting Bats from Archaeological Sites—A Reflection from New Delhi. Heritage, 2(1), 553–567. https://doi.org/10.3390/heritage2010036
- Umadi, R. (2025). Oscillating Ears Dynamically Transform Echoes in Constant-Frequency Bats (p. 2025.06.14.659613). https://doi.org/10.1101/2025.06.14.659613
- Umadi, R. (2025). Temporal Precision Necessitates Wingbeat-Call Asynchrony in Actively Echolocating Bats (p. 2025.06.18.660328). https://doi.org/10.1101/2025.06.18.660328
- Umadi, R. (2025). Widefield Acoustics Heuristic: Advancing Microphone Array Design for Accurate Spatial Tracking of Echolocating Bats (p. 2025.06.03.657701). https://doi.org/10.1101/2025.06.03.657701
- Usui, K., Khannoon, E. R., & Tokita, M. (2022). Facial Muscle Modification Associated with Chiropteran Noseleaf Development: Insights into the Developmental Basis of a Movable Rostral Appendage in Mammals. Developmental Dynamics, 251(8), 1368–1379. https://doi.org/10.1002/dvdy.472
- Usui, K., & Tokita, M. (2019). Normal Embryonic Development of the Greater Horseshoe Bat \mkbibemphRhinolophus\mkbibemph Ferrumequinum , with Special Reference to Nose Leaf Formation. Journal of Morphology, 280(9), 1309–1322. https://doi.org/10.1002/jmor.21032
- Vanderelst, D., & Peremans, H. (2025). How Swarming Bats Can Use the Collective Soundscape for Obstacle Avoidance. PLOS Computational Biology, 21(5), e1013013. https://doi.org/10.1371/journal.pcbi.1013013
- Vanderelst, D., & Peremans, H. (2018). Modeling Bat Prey Capture in Echolocating Bats: The Feasibility of Reactive Pursuit. Journal of Theoretical Biology, 456, 305–314. https://doi.org/10.1016/j.jtbi.2018.07.027
- Vanderelst, D., Mey, F. D., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What Noseleaves Do for FM Bats Depends on Their Degree of Sensorial Specialization. PLoS ONE, 5(8), e11893. https://doi.org/10.1371/journal.pone.0011893
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
- Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., Brain, K. L., Faure, P. A., & Fenton, M. B. (2010). A Bony Connection Signals Laryngeal Echolocation in Bats. Nature, 463(7283), 939–942. https://doi.org/10.1038/nature08737
- Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters, 75(6), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226
- Voigt, C. C., & Lewanzik, D. (2012). ’No Cost of Echolocation for Flying Bats’ Revisited. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 182(6), 831–840. https://doi.org/10.1007/s00360-012-0663-x
- Wajid, M., Kumar, A., & Bahl, R. (2016). Design and Analysis of Air Acoustic Vector-Sensor Configurations for Two-Dimensional Geometry. The Journal of the Acoustical Society of America, 139(5), 2815–2832. https://doi.org/10.1121/1.4948566
- Walker, V. A., Peremans, H., & Hallam, J. C. (1998). One Tone, Two Ears, Three Dimensions: A Robotic Investigation of Pinnae Movements Used by Rhinolophid and Hipposiderid Bats. The Journal of the Acoustical Society of America, 104(1), 569–579. https://doi.org/10.1121/1.423256
- Wallot, S. (2017). Recurrence Quantification Analysis of Processes and Products of Discourse: A Tutorial in R. Discourse Processes, 54(5–6), 382–405. https://doi.org/10.1080/0163853X.2017.1297921
- Wang, X., & Müller, R. (2009). Pinna-Rim Skin Folds Narrow the Sonar Beam in the Lesser False Vampire Bat ( \mkbibemphMegaderma\mkbibemph Spasma ). The Journal of the Acoustical Society of America, 126(6), 3311–3318. https://doi.org/10.1121/1.3257210
- Waters, D. A. (2007). Echolocation in Air: Biological Systems, Technical Challenges, and Transducer Design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(10), 1165–1175. https://doi.org/10.1243/09544062JMES504
- Weinberg, S. (1989). The Cosmological Constant Problem. Reviews of Modern Physics, 61(1), 1–23. https://doi.org/10.1103/RevModPhys.61.1
- Wersényi, G. (2010). Representations of HRTFs Using MATLAB: 2D and 3D Plots of Accurate Dummy-Head Measurements.
- Wichmann, F. A., & Jäkel, F. (2018). Methods in Psychophysics. In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (pp. 1–42). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119170174.epcn507
- Wiegrebe, L. (2008). An Autocorrelation Model of Bat Sonar. Biological Cybernetics, 98(6), 587–595. https://doi.org/10.1007/s00422-008-0216-2
- Wiegrebe, L., & Schmidt, S. (1996). Temporal Integration in the Echolocating Bat, \mkbibemphMegaderma\mkbibemph Lyra. Hearing Research, 102(1), 35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
- Wiegrebe, L., & Schmidt, S. (1996). Temporal Integration in the Echolocating Bat, \mkbibemphMegaderma\mkbibemph Lyra. Hearing Research, 102(1), 35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
- Wiegrebe, L., & Schmidt, S. (1996). Temporal Integration in the Echolocating Bat, Megaderma Lyra. Hearing Research, 102(1–2), 35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
- Wigner, E. THE UNREASONABLE EFFECTIVENSS OF MATHEMATICS IN THE NATURAL SCIENCES.
- Wilkinson, G. S. (2013). 12. Social and Vocal Complexity in Bats. In Animal Social Complexity (pp. 322–341). Harvard University Press. https://www.degruyterbrill.com/document/doi/10.4159/harvard.9780674419131.c24/html
- Willig, M. R., Camilo, G. R., & Noble, S. J. (1993). Dietary Overlap in Frugivorous and Insectivorous Bats from Edaphic Cerrado Habitats of Brazil. Journal of Mammalogy, 74(1), 117–128. https://doi.org/10.2307/1381910
- Wilson, D. E., & Mittermier. Handbook of the Mammals of the World (Vol. 9). Lynx Nature Books. Retrieved May 13, 2025, from https://lynxnaturebooks.com/product/handbook-of-the-mammals-of-the-world-volume-9/
- Wilson, A. M., Lowe, J. C., Roskilly, K., Hudson, P. E., Golabek, K. A., & McNutt, J. W. (2013). Locomotion Dynamics of Hunting in Wild Cheetahs. Nature, 498(7453), 185–189. https://doi.org/10.1038/nature12295
- Wisniewska, D. M. Wisniewska et al 2012. Retrieved April 12, 2025, from https://www.academia.edu/6291486/Wisniewska_et_al_2012
- Wittrock, U. (2010). Laryngeally Echolocating Bats. Nature, 466(7309), E6–E6. https://doi.org/10.1038/nature09156
- Wohlgemuth, M., & Moss, C. (2013). Active Listening in a Complex Environment. Proceedings of Meetings on Acoustics, 19(1), 010030. https://doi.org/10.1121/1.4800959
- Wohlgemuth, M. J., Luo, J., & Moss, C. F. (2016). Three-Dimensional Auditory Localization in the Echolocating Bat. Current Opinion in Neurobiology, 41, 78–86. https://doi.org/10.1016/j.conb.2016.08.002
- Wong, J. G., & Waters, D. A. (2001). The Synchronisation of Signal Emission with Wingbeat During the Approach Phase in Soprano Pipistrelles ( \mkbibemphPipistrellus Pygmaeus ). Journal of Experimental Biology, 204(3), 575–583. https://doi.org/10.1242/jeb.204.3.575
- Wotton, J. M., & Simmons, J. A. (2000). Spectral Cues and Perception of the Vertical Position of Targets by the Big Brown Bat, \mkbibemphEptesicus\mkbibemph Fuscus. The Journal of the Acoustical Society of America, 107(2), 1034–1041. https://doi.org/10.1121/1.428283
- Xia, H., Ma, N., Li, A., & Luo, J. (2025). Call Production and Wingbeat Coupling Is Flexible and Species-Specific in Echolocating Bats. Annals of the New York Academy of Sciences, 1547(1), 105–115. https://doi.org/10.1111/nyas.15325
- Xu, Y., Liu, Z., Tian, Y., Tong, S., Tegmark, M., & Jaakkola, T. (2023). PFGM++: Unlocking the Potential of Physics-Inspired Generative Models. https://doi.org/10.48550/arXiv.2302.04265
- Yang, Y., & Perdikaris, P. (2018). Physics-Informed Deep Generative Models. https://doi.org/10.48550/arXiv.1812.03511
- Yang, Y.-H., Liu, J.-G., & Song, S.-M. (2024). A Recursive Non-Uniform Sampling Estimator for Asynchronous Nonlinear Systems. Sensors, 24(9), 2882. https://doi.org/10.3390/s24092882
- Ye, H., & Luo, J. (2022). Perceptual Hearing Sensitivity during Vocal Production. IScience, 25(11), 105435. https://doi.org/10.1016/j.isci.2022.105435
- Yi, X., Kontopoulos, D.-G., & Hiller, M. (2025). Comprehensive Phylogenetic Reconstructions Support Ancestral Omnivory in the Ecologically Diverse Bat Family Phyllostomidae (p. 2025.02.04.636560). https://doi.org/10.1101/2025.02.04.636560
- Yin, X., & Müller, R. (2019). Fast-Moving Bat Ears Create Informative Doppler Shifts. Proceedings of the National Academy of Sciences, 116(25), 12270–12274. https://doi.org/10.1073/pnas.1901120116
- Yoh, N., Syme, P., Rocha, R., Meyer, C. F. J., & López-Baucells, A. (2020). Echolocation of Central Amazonian ‘Whispering’ Phyllostomid Bats: Call Design and Interspecific Variation. Mammal Research, 65(3), 583–597. https://doi.org/10.1007/s13364-020-00503-0
- Yoshida, S., Hase, K., Heim, O., Kobayasi, K. I., & Hiryu, S. (2024). Doppler Detection Triggers Instantaneous Escape Behavior in Scanning Bats. IScience, 109222. https://doi.org/10.1016/j.isci.2024.109222
- Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal Localization by Pointing Off Axis. Science, 327(5966), 701–704. https://doi.org/10.1126/science.1183310
- Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2009). Visuo-Motor Coordination and Internal Models for Object Interception. Experimental Brain Research, 192(4), 571–604. https://doi.org/10.1007/s00221-008-1691-3
- Zhang, S., Liu, Y., Tang, J., Ying, L., & Müller, R. (2019). Dynamic Relationship between Noseleaf and Pinnae in Echolocating Hipposiderid Bats. The Journal of Experimental Biology, 222(Pt 18), jeb210252. https://doi.org/10.1242/jeb.210252
- Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334. https://doi.org/10.1109/34.888718
- Zhuang, Q., & Müller, R. (2007). Numerical Study of the Effect of the Noseleaf on Biosonar Beamforming in a Horseshoe Bat. Physical Review E, 76(5), 051902. https://doi.org/10.1103/physreve.76.051902
- Zhu, H., Gupta, A. K., Wu, X., Goldsworthy, M., Wang, R., Mikkilineni, M., & Müller, R. (2023). A Validation Study for a Bat-Inspired Sonar Sensing Simulator. PLOS ONE, 18(1), e0280631. https://doi.org/10.1371/journal.pone.0280631