Bibliography
This is a copy of my Zotero bibliography collection. It is automatically updated as I add new entries to my collection.
Journal Articles
- Barshan, B., & Kuc, R. (July-Aug./1992). A Bat-like Sonar System for Obstacle Localization. IEEE Transactions on Systems, Man, and Cybernetics, 22(4), 636–646. https://doi.org/10.1109/21.156577
- Zhu, H., Gupta, A. K., Wu, X., Goldsworthy, M., Wang, R., Mikkilineni, M., & Müller, R. (2023). A Validation Study for a Bat-Inspired Sonar Sensing Simulator. PLOS ONE, 18(1), e0280631. https://doi.org/10.1371/journal.pone.0280631
- Barber, J. R., Plotkin, D., Rubin, J. J., Homziak, N. T., Leavell, B. C., Houlihan, P. R., … Kawahara, A. Y. (2022). Anti-Bat Ultrasound Production in Moths Is Globally and Phylogenetically Widespread. Proceedings of the National Academy of Sciences, 119(25), e2117485119. https://doi.org/10.1073/pnas.2117485119
- Eitan, O., Taub, M., Boonman, A., Zviran, A., Tourbabin, V., Weiss, A. J., & Yovel, Y. (2022). Echolocating Bats Rapidly Adjust Their Mouth Gape to Control Spatial Acquisition When Scanning a Target. BMC Biology, 20(1), 282. https://doi.org/10.1186/s12915-022-01487-w
- Fenton, M. B. (2022). Ear Anatomy Traces a Family Tree for Bats. Nature, 602, 387–388.
- López-González, C., & Ocampo-Ramírez, C. (2022). External Ears in Chiroptera: Form-Function Relationships in an Ecological Context. Acta Chiropterologica, 23(2). https://doi.org/10.3161/15081109ACC2021.23.2.019
- Luo, J., Lu, M., Luo, J., & Moss, C. F. (2022). Echo Feedback Mediates Noise-Induced Vocal Modifications in Flying Bats. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01585-8
- Pedersen, M. B., Uebel, A. S., Beedholm, K., Foskolos, I., Stidsholt, L., & Madsen, P. T. (2022). Echolocating Daubenton’s Bats Call Louder, but Show No Spectral Jamming Avoidance in Response to Bands of Masking Noise during a Landing Task. Journal of Experimental Biology, 225(7), jeb243917. https://doi.org/10.1242/jeb.243917
- Schoeppler, D., Kost, K., Schnitzler, H.-U., & Denzinger, A. (2022). Transmitter and Receiver of the Low Frequency Horseshoe Bat Rhinolophus Paradoxolophus Are Functionally Matched for Fluttering Target Detection. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01571-0
- Stowell, D. (2022). Computational Bioacoustics with Deep Learning: A Review and Roadmap. PeerJ, 10, e13152. https://doi.org/10.7717/peerj.13152
- Teshima, Y., Yamada, Y., Tsuchiya, T., Heim, O., & Hiryu, S. (2022). Analysis of Echolocation Behavior of Bats in “Echo Space” Using Acoustic Simulation. BMC Biology, 20(1), 59. https://doi.org/10.1186/s12915-022-01253-y
- Teshima, Y., Nomura, T., Kato, M., Tsuchiya, T., Shimizu, G., & Hiryu, S. (2022). Effect of Bat Pinna on Sensing Using Acoustic Finite Difference Time Domain Simulation. The Journal of the Acoustical Society of America, 151(6), 4039–4045. https://doi.org/10.1121/10.0011737
- Teshima, Y., Hasegawa, Y., Tsuchiya, T., Moriyama, R., Genda, S., Kawamura, T., & Hiryu, S. (2022). Reconstruction of Echoes Reaching Bats in Flight from Arbitrary Targets by Acoustic Simulation. The Journal of the Acoustical Society of America, 151(3), 2127–2134. https://doi.org/10.1121/10.0009916
- Tsuchiya, T., Teshima, Y., & Hiryu, S. (2022). Two-Dimensional Finite Difference-Time Domain Simulation of Moving Sound Source and Receiver. Acoustical Science and Technology, 43(1), 57–65. https://doi.org/10.1250/ast.43.57
- Tuninetti, A., Simmons, A. M., & Simmons, J. A. (2022). Amplitude Discrimination Is Predictably Affected by Echo Frequency Filtering in Wideband Echolocating Bats. The Journal of the Acoustical Society of America, 151(2), 982–991. https://doi.org/10.1121/10.0009486
- Ye, H., & Luo, J. (2022). Perceptual Hearing Sensitivity during Vocal Production. IScience, 25(11), 105435. https://doi.org/10.1016/j.isci.2022.105435
- Amichai, E., & Yovel, Y. (2021). Echolocating Bats Rely on an Innate Speed-of-Sound Reference. Proceedings of the National Academy of Sciences, 118(19), e2024352118. https://doi.org/10.1073/pnas.2024352118
- Malinka, C. E., Rojano-Doñate, L., & Madsen, P. T. (2021). Directional Biosonar Beams Allow Echolocating Harbour Porpoises to Actively Discriminate and Intercept Closely Spaced Targets. Journal of Experimental Biology, 224(16), jeb242779. https://doi.org/10.1242/jeb.242779
- Neil, T. R., Kennedy, E. E., Harris, B. J., & Holderied, M. W. (2021). Wingtip Folds and Ripples on Saturniid Moths Create Decoy Echoes against Bat Biosonar. Curr Biol, 31(21), 4824–4830.e3. https://doi.org/10.1016/j.cub.2021.08.038
- Stidsholt, L., Greif, S., Goerlitz, H. R., Beedholm, K., Macaulay, J., Johnson, M., & Madsen, P. T. (2021). Hunting Bats Adjust Their Echolocation to Receive Weak Prey Echoes for Clutter Reduction. Science Advances, 7(10), eabf1367. https://doi.org/10.1126/sciadv.abf1367
- Stidsholt, L., Johnson, M., Goerlitz, H. R., & Madsen, P. T. (2021). Wild Bats Briefly Decouple Sound Production from Wingbeats to Increase Sensory Flow during Prey Captures. IScience, 24(8), 102896. https://doi.org/10.1016/j.isci.2021.102896
- Danilovich, S., Shalev, G., Boonman, A., Goldshtein, A., & Yovel, Y. (2020). Echolocating Bats Detect but Misperceive a Multidimensional Incongruent Acoustic Stimulus. Proceedings of the National Academy of Sciences, 117(45), 28475–28484. https://doi.org/10.1073/pnas.2005009117
- Leiser-Miller, L. B., & Santana, S. E. (2020). Morphological Diversity in the Sensory System of Phyllostomid Bats: Implications for Acoustic and Dietary Ecology. Functional Ecology, 34(7), 1416–1427. https://doi.org/10.1111/1365-2435.13561
- Lu, M., Zhang, G., & Luo, J. (2020). Echolocating Bats Exhibit Differential Amplitude Compensation for Noise Interference at a Sub-Call Level. Journal of Experimental Biology, 223(19), jeb225284. https://doi.org/10.1242/jeb.225284
- Ma, X., Zhang, S., Dong, Z., Lu, H., Li, J., & Zhou, W. (2020). Special Acoustical Role of Pinna Simplifying Spatial Target Localization by the Brown Long-Eared Bat Plecotus Auritus. Physical Review E, 102(4), 040401. https://doi.org/10.1103/physreve.102.040401
- Tapu, R., Mocanu, B., & Zaharia, T. (2020). Wearable Assistive Devices for Visually Impaired: A State of the Art Survey. Pattern Recognition Letters, 137, 37–52. https://doi.org/10.1016/j.patrec.2018.10.031
- Yoh, N., Syme, P., Rocha, R., Meyer, C. F. J., & López-Baucells, A. (2020). Echolocation of Central Amazonian ‘Whispering’ Phyllostomid Bats: Call Design and Interspecific Variation. Mammal Research, 65(3), 583–597. https://doi.org/10.1007/s13364-020-00503-0
- Baier, A. L., Wiegrebe, L., & Goerlitz, H. R. (2019). Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. IScience, 14, 335–344. https://doi.org/10.1016/j.isci.2019.03.029
- Beetz, M. J., Kössl, M., & Hechavarría, J. C. (2019). Dynamic Adaptations in the Echolocation Behavior of Bats in Response to Acoustic Interference. BioRxiv, 604603. https://doi.org/10.1101/604603
- Geipel, I., Steckel, J., Tschapka, M., Vanderelst, D., Schnitzler, H.-U., Kalko, E. K. V., … Simon, R. (2019). Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Current Biology, 29(16), 2731–2736.e3. https://doi.org/10.1016/j.cub.2019.06.076
- Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). DeepPoseKit, a Software Toolkit for Fast and Robust Animal Pose Estimation Using Deep Learning. ELife, 8, e47994. https://doi.org/10.7554/elife.47994
- Shriram, U., & Simmons, J. A. (2019). Echolocating Bats Perceive Natural-Size Targets as a Unitary Class Using Micro-Spectral Ripples in Echoes. Behavioral Neuroscience, 133(3), 297–304. https://doi.org/10.1037/bne0000315
- Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., … Madsen, P. T. (2019). A 2.6g Sound and Movement Tag for Studying the Acoustic Scene and Kinematics of Echolocating Bats. Methods in Ecology and Evolution, 10(1), 48–58. https://doi.org/10.1111/2041-210x.13108
- Yin, X., & Müller, R. (2019). Fast-Moving Bat Ears Create Informative Doppler Shifts. Proceedings of the National Academy of Sciences, 116(25), 12270–12274. https://doi.org/10.1073/pnas.1901120116
- Baier, A. L., Stelzer, K.-J., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part II: Amplitude Modulation. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 204(11), 941–951. https://doi.org/10.1007/s00359-018-1292-y
- Baier, A. L., & Wiegrebe, L. (2018). Flutter Sensitivity in FM Bats. Part I: Delay Modulation. Journal of Comparative Physiology A, 204(11), 929–939. https://doi.org/10.1007/s00359-018-1291-z
- Fengzhen, Z., Guijuan, L., Zhaohui, Z., & Chen, H. (2018). Doppler Shift Extraction of Wideband Signal Using Spectrum Scaling Matching. MATEC Web of Conferences, 208, 01001. https://doi.org/10.1051/matecconf/201820801001
- King, S. L., Friedman, W. R., Allen, S. J., Gerber, L., Jensen, F. H., Wittwer, S., … Krützen, M. (2018). Bottlenose Dolphins Retain Individual Vocal Labels in Multi-level Alliances. Current Biology, 28(12), 1993–1999.e3. https://doi.org/10.1016/j.cub.2018.05.013
- Pedrozo, A. R., Gomes, L. A. C., & Uieda, W. (2018). Feeding Behavior and Activity Period of Three Neotropical Bat Species (Chiroptera: Phyllostomidae) on Musa Paradisiaca Inflorescences (Zingiberales: Musaceae). Iheringia. Série Zoologia, 108. https://doi.org/10.1590/1678-4766e2018022
- Ratcliffe, J. M., & Jakobsen, L. (2018). Don’t Believe the Mike: Behavioural, Directional, and Environmental Impacts on Recorded Bat Echolocation Call Measures. Canadian Journal of Zoology, 96(4), 283–288. https://doi.org/10.1139/cjz-2017-0219
- Vanderelst, D., & Peremans, H. (2018). Modeling Bat Prey Capture in Echolocating Bats: The Feasibility of Reactive Pursuit. Journal of Theoretical Biology, 456, 305–314. https://doi.org/10.1016/j.jtbi.2018.07.027
- Kugler, K., & Wiegrebe, L. (2017). Echo-Acoustic Scanning with Noseleaf and Ears in Phyllostomid Bats. Journal of Experimental Biology, 220(15), 2816–2824. https://doi.org/10.1242/jeb.160309
- Lee, W.-J., Falk, B., Chiu, C., Krishnan, A., Arbour, J. H., & Moss, C. F. (2017). Tongue-Driven Sonar Beam Steering by a Lingual-Echolocating Fruit Bat. PLoS Biology, 15(12), e2003148. https://doi.org/10.1371/journal.pbio.2003148
- Ming, C., Gupta, A. K., Lu, R., Zhu, H., & Müller, R. (2017). A Computational Model for Biosonar Echoes from Foliage. PLOS ONE, 12(8), e0182824. https://doi.org/10.1371/journal.pone.0182824
- Ming, C., Zhu, H., & Müller, R. (2017). A Simplified Model of Biosonar Echoes from Foliage and the Properties of Natural Foliages. PLOS ONE, 12(12), e0189824. https://doi.org/10.1371/journal.pone.0189824
- Hase, K., Miyamoto, T., Kobayasi, K. I., & Hiryu, S. (2016). Rapid Frequency Control of Sonar Sounds by the FM Bat, Miniopterus Fuliginosus, in Response to Spectral Overlap. Behavioural Processes, 128, 126–133. https://doi.org/10.1016/j.beproc.2016.04.017
- Hoffmann, S., Vega-Zuniga, T., Greiter, W., Krabichler, Q., Bley, A., Matthes, M., … Luksch, H. (2016). Congruent Representation of Visual and Acoustic Space in the Superior Colliculus of the Echolocating Bat Phyllostomus Discolor. European Journal of Neuroscience, 44(9), 2685–2697. https://doi.org/10.1111/ejn.13394
- Linnenschmidt, M., & Wiegrebe, L. (2016). Sonar Beam Dynamics in Leaf-Nosed Bats. Scientific Reports, 6(1), 29222. https://doi.org/10.1038/srep29222
- Luo, J., & Wiegrebe, L. (2016). Biomechanical Control of Vocal Plasticity in an Echolocating Bat. Journal of Experimental Biology, jeb.134957. https://doi.org/10.1242/jeb.134957
- Luo, J., Lingner, A., Firzlaff, U., & Wiegrebe, L. (2016). The Lombard Effect Emerges Early in Young Bats: Implications for the Development of Audio-Vocal Integration. Journal of Experimental Biology, jeb.151050. https://doi.org/10.1242/jeb.151050
- Wohlgemuth, M. J., Luo, J., & Moss, C. F. (2016). Three-Dimensional Auditory Localization in the Echolocating Bat. Current Opinion in Neurobiology, 41, 78–86. https://doi.org/10.1016/j.conb.2016.08.002
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using \textbfLme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
- Danilovich, S., Krishnan, A., Lee, W.-J., Borrisov, I., Eitan, O., Kosa, G., … Yovel, Y. (2015). Bats Regulate Biosonar Based on the Availability of Visual Information. Current Biology, 25(23), R1124–R1125. https://doi.org/10.1016/j.cub.2015.11.003
- Hulgard, K., Moss, C. F., Jakobsen, L., & Surlykke, A. (2015). Big Brown Bats (Eptesicus Fuscus) Emit Intense Search Calls and Fly in Stereotyped Flight Paths as They Forage in the Wild. Journal of Experimental Biology, 219(3), 334–340. https://doi.org/10.1242/jeb.128983
- Kounitsky, P., Rydell, J., Amichai, E., Boonman, A., Eitan, O., Weiss, A. J., & Yovel, Y. (2015). Bats Adjust Their Mouth Gape to Zoom Their Biosonar Field of View. Proceedings of the National Academy of Sciences, 112(21), 6724–6729. https://doi.org/10.1073/pnas.1422843112
- Luo, J. (2015). Linking the Sender to the Receiver: Vocal Adjustments by Bats to Maintain Signal Detection in Noise. Scientific Reports, 11.
- Marshall, K. L., Chadha, M., deSouza, L. A., Sterbing-D’Angelo, S. J., Moss, C. F., & Lumpkin, E. A. (2015). Somatosensory Substrates of Flight Control in Bats. Cell Reports, 11(6), 851–858. https://doi.org/10.1016/j.celrep.2015.04.001
- Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating Fruit Bats Produce Biosonar Clicks with Their Wings. Current Biology, 24(24), 2962–2967. https://doi.org/10.1016/j.cub.2014.10.077
- Heinrich, M., & Wiegrebe, L. (2013). Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance. PLoS ONE, 8(4), e61577. https://doi.org/10.1371/journal.pone.0061577
- Jakobsen, L., Ratcliffe, J. M., & Surlykke, A. (2013). Convergent Acoustic Field of View in Echolocating Bats. Nature, 493(7430), 93–96. https://doi.org/10.1038/nature11664
- Jakobsen, L., Brinkløv, S., & Surlykke, A. (2013). Intensity and Directionality of Bat Echolocation Signals. Frontiers in Physiology, 4, 89. https://doi.org/10.3389/fphys.2013.00089
- Matsuta, N., Hiryu, S., Fujioka, E., Yamada, Y., Riquimaroux, H., & Watanabe, Y. (2013). Adaptive Beam-Width Control of Echolocation Sounds by CF–FM Bats, Rhinolophus Ferrumequinum Nippon, during Prey-Capture Flight. Journal of Experimental Biology, 216(7), 1210–1218. https://doi.org/10.1242/jeb.081398
- Seibert, A.-M., Koblitz, J. C., Denzinger, A., & Schnitzler, H.-U. (2013). Scanning Behavior in Echolocating Common Pipistrelle Bats (Pipistrellus Pipistrellus). PLoS ONE, 8(4), e60752. https://doi.org/10.1371/journal.pone.0060752
- Surlykke, A., Jakobsen, L., Kalko, E. K. V., & Page, R. A. (2013). Echolocation Intensity and Directionality of Perching and Flying Fringe-Lipped Bats, Trachops Cirrhosus (Phyllostomidae). Frontiers in Physiology, 4, 143. https://doi.org/10.3389/fphys.2013.00143
- Feng, L., Gao, L., Lu, H., & Müller, R. (2012). Noseleaf Dynamics during Pulse Emission in Horseshoe Bats. PLoS ONE, 7(5), e34685. https://doi.org/10.1371/journal.pone.0034685
- Fenton, M. B., Faure, P. A., & Ratcliffe, J. M. (2012). Evolution of High Duty Cycle Echolocation in Bats. Journal of Experimental Biology, 215(17), 2935–2944. https://doi.org/10.1242/jeb.073171
- Genzel, D., Geberl, C., Dera, T., & Wiegrebe, L. (2012). Coordination of Bat Sonar Activity and Flight for the Exploration of Three-Dimensional Objects. Journal of Experimental Biology, 215(13), 2226–2235. https://doi.org/10.1242/jeb.064535
- Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats Use Echo Harmonic Structure to Distinguish Their Targets from Background Clutter. Science, 333(6042), 627–630. https://doi.org/10.1126/science.1202065
- Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation Call Intensity and Directionality in Flying Short-Tailed Fruit Bats, Carollia Perspicillata (Phyllostomidae)a). The Journal of the Acoustical Society of America, 129(1), 427. https://doi.org/10.1121/1.3519396
- Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast Muscles Set Maximum Call Rate in Echolocating Bats. Science, 333(6051), 1885–1888. https://doi.org/10.1126/science.1207309
- Gao, L., Balakrishnan, S., He, W., Yan, Z., & Müller, R. (2011). Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns. Physical Review Letters, 107(21), 214301. https://doi.org/10.1103/physrevlett.107.214301
- Kuc, R. (2011). Bat Noseleaf Model: Echolocation Function, Design Considerations, and Experimental Verification. The Journal of the Acoustical Society of America, 129(5), 3361–3366. https://doi.org/10.1121/1.3569703
- Lazure, L., & Fenton, M. B. (2011). High Duty Cycle Echolocation and Prey Detection by Bats. Journal of Experimental Biology, 214(7), 1131–1137. https://doi.org/10.1242/jeb.048967
- Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive Vocal Behavior Drives Perception by Echolocation in Bats. Current Opinion in Neurobiology, 21(4), 645–652. https://doi.org/10.1016/j.conb.2011.05.028
- Goerlitz, H. R., Geberl, C., & Wiegrebe, L. (2010). Sonar Detection of Jittering Real Targets in a Free-Flying Bat. The Journal of the Acoustical Society of America, 128(3), 1467–1475. https://doi.org/10.1121/1.3445784
- Jakobsen, L., & Surlykke, A. (2010). Vespertilionid Bats Control the Width of Their Biosonar Sound Beam Dynamically during Prey Pursuit. Proceedings of the National Academy of Sciences, 107(31), 13930–13935. https://doi.org/10.1073/pnas.1006630107
- Koblitz, J. C., Stilz, P., & Schnitzler, H.-U. (2010). Source Levels of Echolocation Signals Vary in Correlation with Wingbeat Cycle in Landing Big Brown Bats (Eptesicus Fuscus). Journal of Experimental Biology, 213(19), 3263–3268. https://doi.org/10.1242/jeb.045450
- Kuc, R. (2010). Morphology Suggests Noseleaf and Pinnae Cooperate to Enhance Bat Echolocation. The Journal of the Acoustical Society of America, 128(5), 3190–3199. https://doi.org/10.1121/1.3488304
- Moss, C. F., & Surlykke, A. (2010). Probing the Natural Scene by Echolocation in Bats. Frontiers in Behavioral Neuroscience, 4, 33. https://doi.org/10.3389/fnbeh.2010.00033
- Müller, R. (2010). Numerical Analysis of Biosonar Beamforming Mechanisms and Strategies in Bats. The Journal of the Acoustical Society of America, 128(3), 1414. https://doi.org/10.1121/1.3365246
- Vanderelst, D., Mey, F. D., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What Noseleaves Do for FM Bats Depends on Their Degree of Sensorial Specialization. PLoS ONE, 5(8), e11893. https://doi.org/10.1371/journal.pone.0011893
- Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., … Fenton, M. B. (2010). A Bony Connection Signals Laryngeal Echolocation in Bats. Nature, 463(7283), 939–942. https://doi.org/10.1038/nature08737
- Wersényi, G. (2010). Representations of HRTFs Using MATLAB: 2D and 3D Plots of Accurate Dummy-Head Measurements.
- Wittrock, U. (2010). Laryngeally Echolocating Bats. Nature, 466(7309), E6–E6. https://doi.org/10.1038/nature09156
- Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal Localization by Pointing Off Axis. Science, 327(5966), 701–704. https://doi.org/10.1126/science.1183310
- Kopsinis, Y., Aboutanios, E., Waters, D. A., & McLaughlin, S. (2009). Investigation of Bat Echolocation Calls Using High Resolution Spectrogram and Instantaneous Frequency Based Analysis. 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 557–560. https://doi.org/10.1109/ssp.2009.5278516
- Kuc, R. (2009). Model Predicts Bat Pinna Ridges Focus High Frequencies to Form Narrow Sensitivity Beams. The Journal of the Acoustical Society of America, 125(5), 3454. https://doi.org/10.1121/1.3097500
- Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic Scanning of Natural Scenes by Echolocation in the Big Brown Bat, Eptesicus Fuscus. Journal of Experimental Biology, 212(7), 1011–1020. https://doi.org/10.1242/jeb.024620
- Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating Bats Emit a Highly Directional Sonar Sound Beam in the Field. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 853–860. https://doi.org/10.1098/rspb.2008.1505
- Wang, X., & Müller, R. (2009). Pinna-Rim Skin Folds Narrow the Sonar Beam in the Lesser False Vampire Bat ( Megaderma Spasma ). The Journal of the Acoustical Society of America, 126(6), 3311–3318. https://doi.org/10.1121/1.3257210
- De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
- De Mey, F., Reijniers, J., Peremans, H., Otani, M., & Firzlaff, U. (2008). Simulated Head Related Transfer Function of the Phyllostomid Bat Phyllostomus Discolor. The Journal of the Acoustical Society of America, 124(4), 2123–2132. https://doi.org/10.1121/1.2968703
- Genzel, D., & Wiegrebe, L. (2008). Time-Variant Spectral Peak and Notch Detection in Echolocation-Call Sequences in Bats. Journal of Experimental Biology, 211(1), 9–14. https://doi.org/10.1242/jeb.012823
- Müller, R., Lu, H., & Buck, J. R. (2008). Sound-Diffracting Flap in the Ear of a Bat Generates Spatial Information. Physical Review Letters, 100(10), 108701. https://doi.org/10.1103/PhysRevLett.100.108701
- Surlykke, A., & Kalko, E. K. V. (2008). Echolocating Bats Cry Out Loud to Detect Their Prey. PLoS ONE, 3(4), e2036. https://doi.org/10.1371/journal.pone.0002036
- Wiegrebe, L. (2008). An Autocorrelation Model of Bat Sonar. Biological Cybernetics, 98(6), 587–595. https://doi.org/10.1007/s00422-008-0216-2
- Chiu, C., & Moss, C. F. (2007). The Role of the External Ear in Vertical Sound Localization in the Free Flying Bat, Eptesicus Fuscus. The Journal of the Acoustical Society of America, 121(4), 2227–2235. https://doi.org/10.1121/1.2434760
- Elliott, L. P., & Brook, B. W. (2007). Revisiting Chamberlin: Multiple Working Hypotheses for the 21st Century. BioScience, 57(7), 608–614. https://doi.org/10.1641/B570708
- Holderied, M. W., Baker, C. J., Vespe, M., & Jones, G. (2007). Understanding Signal Design during the Pursuit of Aerial Insects by Echolocating Bats: Tools and Applications. Integrative and Comparative Biology, 48(1), 74–84. https://doi.org/10.1093/icb/icn035
- Jones, G., & Holderied, M. W. (2007). Bat Echolocation Calls: Adaptation and Convergent Evolution. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 905–912. https://doi.org/10.1098/rspb.2006.0200
- Jung, K., Kalko, E. K. V., & Helversen, O. V. (2007). Echolocation Calls in Central American Emballonurid Bats: Signal Design and Call Frequency Alternation. Journal of Zoology, 272(2), 125–137. https://doi.org/10.1111/j.1469-7998.2006.00250.x
- MacDonald, J. A., & Tran, P. K. (2007). Loudspeaker Equalization for Auditory Research. Behavior Research Methods, 39(1), 133–136. https://doi.org/10.3758/bf03192851
- Madsen, P. T., & Wahlberg, M. (2007). Recording and Quantification of Ultrasonic Echolocation Clicks from Free-Ranging Toothed Whales. Deep Sea Research Part I: Oceanographic Research Papers, 54(8), 1421–1444. https://doi.org/10.1016/j.dsr.2007.04.020
- Waters, D. A. (2007). Echolocation in Air: Biological Systems, Technical Challenges, and Transducer Design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(10), 1165–1175. https://doi.org/10.1243/09544062JMES504
- Zhuang, Q., & Müller, R. (2007). Numerical Study of the Effect of the Noseleaf on Biosonar Beamforming in a Horseshoe Bat. Physical Review E, 76(5), 051902. https://doi.org/10.1103/physreve.76.051902
- Jones, G., & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001
- Kwiecinski, G. G. (2006). Phyllostomus Discolor. Mammalian Species, (801), 1–11. https://doi.org/10.1644/801.1
- Otani, M., & Ise, S. (2006). Fast Calculation System Specialized for Head-Related Transfer Function Based on Boundary Element Method. The Journal of the Acoustical Society of America, 119(5), 2589–2598. https://doi.org/10.1121/1.2191608
- Nuzzo, R. (2004). P Values, the ‘Gold Standard’ of Statistical Validity, Are Not as Reliable as Many Scientists Assume. 3.
- Firzlaff, U., & Schuller, G. (2003). Spectral Directionality of the External Ear of the Lesser Spear-Nosed Bat, Phyllostomus Discolor. Hearing Research, 185(1-2), 110–122. https://doi.org/10.1016/s0378-5955(03)00281-8
- Ghose, K., & Moss, C. F. (2003). The Sonar Beam Pattern of a Flying Bat as It Tracks Tethered Insects. The Journal of the Acoustical Society of America, 114(2), 1120–1131. https://doi.org/10.1121/1.1589754
- Tollin, D. J., & Yin, T. C. T. (2003). Spectral Cues Explain Illusory Elevation Effects With Stereo Sounds in Cats. Journal of Neurophysiology, 90(1), 525–530. https://doi.org/10.1152/jn.00107.2003
- Moss, C. F., & Surlykke, A. (2001). Auditory Scene Analysis by Echolocation in Bats. The Journal of the Acoustical Society of America, 110(4), 2207–2226. https://doi.org/10.1121/1.1398051
- SCHNITZLER, H. A. N. S.-U. L. R. I. C. H., & KALKO, E. L. I. S. A. B. E. T. H. K. V. (2001). Echolocation by Insect-Eating Bats. BioScience, 51(7), 557. https://doi.org/10.1641/0006-3568(2001)051[0557:ebieb]2.0.co;2
- Sanderson, M. I., & Simmons, J. A. (2000). Neural Responses to Overlapping FM Sounds in the Inferior Colliculus of Echolocating Bats. Journal of Neurophysiology, 83(4), 1840–1855. https://doi.org/10.1152/jn.2000.83.4.1840
- Wotton, J. M., & Simmons, J. A. (2000). Spectral Cues and Perception of the Vertical Position of Targets by the Big Brown Bat, Eptesicus Fuscus. The Journal of the Acoustical Society of America, 107(2), 1034–1041. https://doi.org/10.1121/1.428283
- Hawksford, M. J. (1999). MATLAB Program for Loudspeaker Equalization and Crossover Design. Journal of the Audio Engineering Society, 47(9), 706–719. Retrieved from https://www.aes.org/e-lib/browse.cfm?elib=12094
- Altes, R. A. (1998). Echo Phase Perception in Bat Sonar? The Journal of the Acoustical Society of America, 69(2), 505. https://doi.org/10.1121/1.385479
- Walker, V. A., Peremans, H., & Hallam, J. C. (1998). One Tone, Two Ears, Three Dimensions: A Robotic Investigation of Pinnae Movements Used by Rhinolophid and Hipposiderid Bats. The Journal of the Acoustical Society of America, 104(1), 569–579. https://doi.org/10.1121/1.423256
- Simmons, J. A. (1997). Encyclopedia of Acoustics. 1819–1822. https://doi.org/10.1002/9780470172544.ch151
- Fuzessery, Z. M. (1996). Monaural and Binaural Spectral Cues Created by the External Ears of the Pallid Bat. Hearing Research, 95(1-2), 1–17. https://doi.org/10.1016/0378-5955(95)00223-5
- Simmons, J. A., Saillant, P. A., Wotton, J. M., Haresign, T., Ferragamo, M. J., & Moss, C. F. (1995). Composition of Biosonar Images for Target Recognition by Echolocating Bats. Neural Networks, 8(7-8), 1239–1261. https://doi.org/10.1016/0893-6080(95)00059-3
- Kalko, E. K. V., & Schnitzler, H.-U. (1993). Plasticity in Echolocation Signals of European Pipistrelle Bats in Search Flight: Implications for Habitat Use and Prey Detection. Behavioral Ecology and Sociobiology, 33(6), 415–428. https://doi.org/10.1007/bf00170257
- Obrist, M. K., Fenton, M. B., Eger, J. L., & Schlegel, P. A. (1993). What Ears Do for Bats: A Comparative Study of Pinna Sound Pressure Transformation in Chiroptera. The Journal of Experimental Biology, 180, 119–152.
- Pye, J. D. (1993). IS FIDELITY FUTILE? THE ‘TRUE’ SIGNAL IS ILLUSORY, ESPECIALLY WITH ULTRASOUND. Bioacoustics, 4(4), 271–286. https://doi.org/10.1080/09524622.1993.10510438
- Willig, M. R., Camilo, G. R., & Noble, S. J. (1993). Dietary Overlap in Frugivorous and Insectivorous Bats from Edaphic Cerrado Habitats of Brazil. Journal of Mammalogy, 74(1), 117–128. https://doi.org/10.2307/1381910
- Speakman, J. R., & Racey, P. A. (1991). No Cost of Echolocation for Bats in Flight. Nature, 350(6317), 421–423. https://doi.org/10.1038/350421a0
- Arita, H. T. (1990). Noseleaf Morphology and Ecological Correlates in Phyllostomid Bats. Journal of Mammalogy, 71(1), 36–47. https://doi.org/10.2307/1381314
- Simmons, J. A., Moss, C. F., & Ferragamo, M. (1990). Convergence of Temporal and Spectral Information into Acoustic Images of Complex Sonar Targets Perceived by the Echolocating Bat, Eptesicus Fuscus. Journal of Comparative Physiology A, 166(4), 449–470. https://doi.org/10.1007/BF00192016
- Simmons, J. A. (1989). A View of the World through the Bat’s Ear: The Formation of Acoustic Images in Echolocation. Cognition, 33(1-2), 155–199. https://doi.org/10.1016/0010-0277(89)90009-7
- Hartley, D. J., & Suthers, R. A. (1988). The Acoustics of the Vocal Tract in the Horseshoe Bat, Rhinolophus Hildebrandti. The Journal of the Acoustical Society of America, 84(4), 1201–1213. https://doi.org/10.1121/1.396621
- Mogdans, J., Ostwald, J., & Schnitzler, H.-U. (1988). The Role of Pinna Movement for the Localization of Vertical and Horizontal Wire Obstacles in the Greater Horseshoe Bat, R h i n o l o p u s f e r r u m e q u i n u m. The Journal of the Acoustical Society of America, 84(5), 1676–1679. https://doi.org/10.1121/1.397183
- Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation. (1987). Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1179), 335–427. https://doi.org/10.1098/rstb.1987.0030
- Hartley, D. J., & Suthers, R. A. (1987). The Sound Emission Pattern and the Acoustical Role of the Noseleaf in the Echolocating Bat, Carollia Perspicillata. The Journal of the Acoustical Society of America, 82(6), 1892–1900. https://doi.org/10.1121/1.395684
- Bell, G. P., & Fenton, M. B. (1984). The Use of Doppler-shifted Echoes as a Flutter Detection and Clutter Rejection System: The Echolocation and Feeding Behavior of Hipposideros Tuber (Chiroptera :Hipposideridae). (15), 109–114.
- Friedlander, B., & Porat, B. (1984). The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-20(2), 158–173. https://doi.org/10.1109/TAES.1984.310437
- Kick, S. A., & Simmons, J. A. (1984). Automatic Gain Control in the Bat’s Sonar Receiver and the Neuroethology of Echolocation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 4(11), 2725–2737. https://doi.org/10.1523/jneurosci.04-11-02725.1984
- Simmons, J. A., Kick, S. A., & Lawrence, B. D. (1984). Echolocation and Hearing in the Mouse-Tailed Bat,Rhinopoma Hardwickei: Acoustic Evolution of Echolocation in Bats. Journal of Comparative Physiology A, 154(3), 347–356. https://doi.org/10.1007/bf00605234
- Lawrence, B. D., & Simmons, J. A. (1982). Echolocation in Bats: The External Ear and Perception of the Vertical Positions of Targets. Science, 218(4571), 481–483. https://doi.org/10.1126/science.7123247
- Trappe, M., & Schnitzler, H.-U. (1982). Doppler-Shift Compensation in Insect-Catching Horseshoe Bats. Naturwissenschaften, 69(4), 193–194. https://doi.org/10.1007/BF00364902
- Simmons, J. A., & Stein, R. A. (1980). Acoustic Imaging in Bat Sonar: Echolocation Signals and the Evolution of Echolocation. Journal of Comparative Physiology, 135(1), 61–84. https://doi.org/10.1007/bf00660182
- Simmons, J. A. (1979). Perception of Echo Phase Information in Bat Sonar. Science, 204(4399), 1336–1338. https://doi.org/10.1126/science.451543
- Schuller, G. (1974). The Role of Overlap of Echo with Outgoing Echolocation Sound in the Bat Rhinolophus Ferrumequinum. Naturwissenschaften, 61(4), 171–172. https://doi.org/10.1007/BF00602598
- SUTHERS, R. O. D. E. R. I. C. K. A., THOMAS, S. T. E. V. E. N. P., & SUTHERS, B. A. R. B. A. R. A. J. (1972). Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat. Journal of Experimental Biology, 56, 37–48. Retrieved from https://jeb.biologists.org/content/56/1/37.short
- Strother, G. K., & Mogus, M. (1970). Acoustical Beam Patterns for Bats: Some Theoretical Considerations. The Journal of the Acoustical Society of America, 48(6B), 1430–1432. https://doi.org/10.1121/1.1912304
- Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The Echolocation of Flying Insects by Bats. Animal Behaviour, 8(3), 141–154. https://doi.org/10.1016/0003-3472(60)90022-1
- Griffin, D. R. (1944). How Bats Guide Their Flight by Supersonic Echoes. American Journal of Physics, 12(6), 342–345. https://doi.org/10.1119/1.1990634
- Perrine, J. O. (1944). The Doppler and Echo Doppler Effect. American Journal of Physics, 12(1), 23–28. https://doi.org/10.1119/1.1990527
- Griffin, D. R., & Galambos, R. (1941). The Sensory Basis of Obstacle Avoidance by Flying Bats. Journal of Experimental Zoology, 86(3), 481–506. https://doi.org/10.1002/jez.1400860310
- Chamberlin, T. C. (1890). The Method of Multiple Working Hypotheses. Science, ns-15(366), 92–96. https://doi.org/10.1126/science.ns-15.366.92
- Baldwin, M. Peer Review. Encyclopedia Of The History Of Science. Retrieved from https://ethos.lps.library.cmu.edu/article/id/19/
- Fletcher, N. H., & Thwaites, S. Obliquely Truncated Simple Horns: Idealized Models for Vertebrate Pinnae.
Conference Articles
- Nguyen, T. H., & Vanderelst, D. (2022). Toward Behavior-Based Models of Bat Echolocation. 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 1529–1536. https://doi.org/10.1109/SSCI51031.2022.10022100
- Ratcliffe, J. (2015). Ultrasonic and Superfast: Design Constraints on Echolocation in Bats. The Journal of the Acoustical Society of America, 138, 1931–1931. https://doi.org/10.1121/1.4934086
- Moss, C. (2012). Adaptive Echolocation Behavior in a Complex Sonar Scene. The Journal of the Acoustical Society of America, 131, 3360–3360. https://doi.org/10.1121/1.4708649
- Balakrishnan, S., Gao, L., He, W., & Müller, R. (2010). A Digital Model for the Deformation of Bat Ears. The Journal of the Acoustical Society of America, 127, 1862–1862. https://doi.org/10.1121/1.3384444
- Surlykke, A., Jakobsen, L., Brinkloev, S., & Moss, C. (2009). Bats Control the Auditory Scene by Adapting Intensity and Directionality of Echolocation Calls. The Journal of the Acoustical Society of America, 126, 2271–2271. https://doi.org/10.1121/1.3249296
- Moss, C., Ghose, K., & Surlykke, A. (2008). The Echolocating Bat Controls the Direction and Distance of Its Acoustic Gaze.
Book Chapters
- Gulia, P., & Gupta, A. (2017). Mathematics and Acoustics. In Mathematics Applied to Engineering (pp. 55–82). Elsevier. https://doi.org/10.1016/B978-0-12-810998-4.00003-X
- Surlykke, A., & Nachtigall, P. E. (2014). Biosonar of Bats and Toothed Whales: An Overview. In Biosonar (pp. 1–9).
- Carlile, S., Martin, R., & McAnally, K. (2005). Spectral Information in Sound Localization. In International Review of Neurobiology (Vol. 70, pp. 399–434). Elsevier. https://doi.org/10.1016/S0074-7742(05)70012-X
Books
- Fenton, B., Grinnell, A. D., Popper, A. N., & Fay, R. R. (2016). Bat Bioacoustics. Springer Link. Retrieved from https://link.springer.com/book/10.1007/978-1-4939-3527-7
- Jacobs, D. S., & Bastian, A. (2016). Predator–Prey Interactions: Co-evolution between Bats and Their Prey. https://doi.org/10.1007/978-3-319-32492-0
- Rossing, T. D. (Ed.). (2014). Springer Handbook of Acoustics (2nd ed.).
- Surlykke, A., Nachtigall, P. E., Fay, R. R., & Popper, A. N. (Eds.). (2014). Biosonar. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-9146-0
- Tan, L., & Jiang, J. (2014). Digital Signal Processing - Fundamentals and Applications. Retrieved from https://www.sciencedirect.com/book/9780124158931/digital-signal-processing
- Adams, R. A., & Pedersen, S. C. (2013). Bat Evolution, Ecology, and Conservation.
- Beranek, L. L., & Mellow, T. J. (2012). Acoustics: Sound Fields and Transducers. Retrieved from https://www.sciencedirect.com/book/9780123914217/acoustics-sound-fields-and-transducers
- Leis, J. W. (2011). Digital Signal Processing Using MATLAB for Students and Researchers. John Wiley & Sons, Inc.
- Havelock, D., Kuwano, S., & Vorländer, M. (Eds.). (2008). Handbook of Signal Processing in Acoustics (1st ed.). Springer New York, NY. Retrieved from https://link.springer.com/book/10.1007/978-0-387-30441-0
- Rocchesso, D. (2003). Introduction to Sound Processing. Firenze: Mondo estremo.
- Nachtigall, P. E., & Moore, P. W. B. (Eds.). (1988). Animal Sonar, Processes and Performance. Springer New York, NY. https://doi.org/10.1007/978-1-4684-7493-0
- Griffin, D. R. (1958). Listening in the Dark: The Acoustic Orientation of Bats and Men (pp. xviii, 413). Oxford, England: Yale Univer. Press.
Miscellaneous
- Wohlgemuth, M., & Moss, C. F. (2013). Active Listening in a Complex Environment.
- Schneider, H. (1960). Die Ohrmuskulature von Asellia tridens GEOFFR. (Hipposideridae) und Myotis myotis BORKH (Vespertilionidae) (Chiroptera).
- Perceptual Hearing Sensitivity during Vocal Production | Elsevier Enhanced Reader. https://doi.org/10.1016/j.isci.2022.105435
Technical Reports
- Geoffroy, P. (2004). A Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project. Paris, France: IRCAM.
Theses
- Carmena, J. M. (2001). Towards a Bionic Bat: A Biomimetic Investigation of Active Sensing, Doppler-shift Estimation, and Ear Morphology Design for Mobile Robots. (PhD thesis). Retrieved from https://era.ed.ac.uk/handle/1842/325
Cite As: Umadi, Ravi (2023). Bibliography, Retrieved from https://biosonix.io/Bibliography/